Contents

1 Introduction to Minion 4
 1.1 What are constraints? 4
 1.2 Solving constraint problems 5
 1.3 Minion 7
 1.3.1 Installing Minion 7
 1.3.2 Installation instructions for Windows 7
 1.3.3 Installation instructions for Mac 7
 1.3.4 Installation instructions for Linux-x86 or x64 7
 1.3.5 Compilation instructions 7
 1.3.6 Trying out the executable 9
 1.3.7 The debug variant 9
 1.3.8 Minion online help 9
 1.3.9 Basic Minion use 9

2 Minion Internals 11
 2.1 Variable Types 11
 2.2 Choosing Between Minion’s Constraints 12
 2.3 Compile-time options 13
 2.3.1 Required and optional components 14
 2.3.2 Selective compilation of constraints 14

3 Minion in Practice 16
 3.1 Minion Example File 16
 3.2 The Farmers Problem 20
 3.3 Cryptarithmetics 21
 3.4 The Eight Number Puzzle 22
 3.5 A $K_4 \times P_2$ Graceful Graph 27
 3.6 The Zebra Puzzle 30
 3.7 N-Queens 36

A All the Minion programming constructs 39
 A.1 constraints 40
 A.2 constraints abs 40
 A.3 constraints alldiff 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4</td>
<td>constraints difference</td>
<td>41</td>
</tr>
<tr>
<td>A.5</td>
<td>constraints diseq</td>
<td>41</td>
</tr>
<tr>
<td>A.6</td>
<td>constraints div</td>
<td>41</td>
</tr>
<tr>
<td>A.7</td>
<td>constraints element</td>
<td>42</td>
</tr>
<tr>
<td>A.8</td>
<td>constraints element_one</td>
<td>43</td>
</tr>
<tr>
<td>A.9</td>
<td>constraints eq</td>
<td>43</td>
</tr>
<tr>
<td>A.10</td>
<td>constraints gacalldiff</td>
<td>43</td>
</tr>
<tr>
<td>A.11</td>
<td>constraints gaclexleq</td>
<td>44</td>
</tr>
<tr>
<td>A.12</td>
<td>constraints gaclexless</td>
<td>44</td>
</tr>
<tr>
<td>A.13</td>
<td>constraints gcc</td>
<td>45</td>
</tr>
<tr>
<td>A.14</td>
<td>constraints gcweak</td>
<td>45</td>
</tr>
<tr>
<td>A.15</td>
<td>constraints hamming</td>
<td>46</td>
</tr>
<tr>
<td>A.16</td>
<td>constraints ineq</td>
<td>46</td>
</tr>
<tr>
<td>A.17</td>
<td>constraints lexleq</td>
<td>47</td>
</tr>
<tr>
<td>A.18</td>
<td>constraints lexless</td>
<td>47</td>
</tr>
<tr>
<td>A.19</td>
<td>constraints litsumgeq</td>
<td>48</td>
</tr>
<tr>
<td>A.20</td>
<td>constraints max</td>
<td>48</td>
</tr>
<tr>
<td>A.21</td>
<td>constraints min</td>
<td>48</td>
</tr>
<tr>
<td>A.22</td>
<td>constraints minuseq</td>
<td>49</td>
</tr>
<tr>
<td>A.23</td>
<td>constraints modulo</td>
<td>49</td>
</tr>
<tr>
<td>A.24</td>
<td>constraints negativetable</td>
<td>49</td>
</tr>
<tr>
<td>A.25</td>
<td>constraints occurrence</td>
<td>50</td>
</tr>
<tr>
<td>A.26</td>
<td>constraints occurrencegeq</td>
<td>50</td>
</tr>
<tr>
<td>A.27</td>
<td>constraints occurrenceleq</td>
<td>51</td>
</tr>
<tr>
<td>A.28</td>
<td>constraints pow</td>
<td>51</td>
</tr>
<tr>
<td>A.29</td>
<td>constraints product</td>
<td>51</td>
</tr>
<tr>
<td>A.30</td>
<td>constraints reification</td>
<td>52</td>
</tr>
<tr>
<td>A.31</td>
<td>constraints reify</td>
<td>52</td>
</tr>
<tr>
<td>A.32</td>
<td>constraints reifyimply</td>
<td>52</td>
</tr>
<tr>
<td>A.33</td>
<td>constraints sumgeq</td>
<td>52</td>
</tr>
<tr>
<td>A.34</td>
<td>constraints sumleq</td>
<td>53</td>
</tr>
<tr>
<td>A.35</td>
<td>constraints table</td>
<td>53</td>
</tr>
<tr>
<td>A.36</td>
<td>constraints watched-and</td>
<td>54</td>
</tr>
<tr>
<td>A.37</td>
<td>constraints watched-or</td>
<td>54</td>
</tr>
<tr>
<td>A.38</td>
<td>constraints watchelement</td>
<td>54</td>
</tr>
<tr>
<td>A.39</td>
<td>constraints watchelement_one</td>
<td>55</td>
</tr>
<tr>
<td>A.40</td>
<td>constraints watchless</td>
<td>55</td>
</tr>
<tr>
<td>A.41</td>
<td>constraints watchsumgeq</td>
<td>55</td>
</tr>
<tr>
<td>A.42</td>
<td>constraints watchsumleq</td>
<td>56</td>
</tr>
<tr>
<td>A.43</td>
<td>constraints watchvecneq</td>
<td>56</td>
</tr>
<tr>
<td>A.44</td>
<td>constraints weightedsumgeq</td>
<td>56</td>
</tr>
<tr>
<td>A.45</td>
<td>constraints weightedsumleq</td>
<td>57</td>
</tr>
<tr>
<td>A.46</td>
<td>constraints w-inrange</td>
<td>57</td>
</tr>
<tr>
<td>A.47</td>
<td>constraints w-inset</td>
<td>57</td>
</tr>
<tr>
<td>A.48</td>
<td>constraints w-literal</td>
<td>57</td>
</tr>
<tr>
<td>A.49</td>
<td>constraints w-notinrange</td>
<td>58</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>A.50</td>
<td>constraints w-notinset</td>
<td>58</td>
</tr>
<tr>
<td>A.51</td>
<td>constraints w-notliteral</td>
<td>58</td>
</tr>
<tr>
<td>A.52</td>
<td>input</td>
<td>58</td>
</tr>
<tr>
<td>A.53</td>
<td>input constraints</td>
<td>59</td>
</tr>
<tr>
<td>A.54</td>
<td>input example</td>
<td>60</td>
</tr>
<tr>
<td>A.55</td>
<td>input search</td>
<td>62</td>
</tr>
<tr>
<td>A.56</td>
<td>input tuplelist</td>
<td>63</td>
</tr>
<tr>
<td>A.57</td>
<td>input variables</td>
<td>64</td>
</tr>
<tr>
<td>A.58</td>
<td>switches</td>
<td>64</td>
</tr>
<tr>
<td>A.59</td>
<td>switches -check</td>
<td>64</td>
</tr>
<tr>
<td>A.60</td>
<td>switches -cpulimit</td>
<td>65</td>
</tr>
<tr>
<td>A.61</td>
<td>switches -dumptree</td>
<td>65</td>
</tr>
<tr>
<td>A.62</td>
<td>switches -findall.sols</td>
<td>65</td>
</tr>
<tr>
<td>A.63</td>
<td>switches -fullprop</td>
<td>65</td>
</tr>
<tr>
<td>A.64</td>
<td>switches -nocheck</td>
<td>65</td>
</tr>
<tr>
<td>A.65</td>
<td>switches -nodelimit</td>
<td>66</td>
</tr>
<tr>
<td>A.66</td>
<td>switches -noprintsols</td>
<td>66</td>
</tr>
<tr>
<td>A.67</td>
<td>switches -noresume</td>
<td>66</td>
</tr>
<tr>
<td>A.68</td>
<td>switches -preprocess</td>
<td>66</td>
</tr>
<tr>
<td>A.69</td>
<td>switches -print.sols</td>
<td>67</td>
</tr>
<tr>
<td>A.70</td>
<td>switches -print.sols.only</td>
<td>67</td>
</tr>
<tr>
<td>A.71</td>
<td>switches -quiet</td>
<td>67</td>
</tr>
<tr>
<td>A.72</td>
<td>switches -randomise.order</td>
<td>68</td>
</tr>
<tr>
<td>A.73</td>
<td>switches -randomseed</td>
<td>68</td>
</tr>
<tr>
<td>A.74</td>
<td>switches -redump</td>
<td>68</td>
</tr>
<tr>
<td>A.75</td>
<td>switches -resume-file</td>
<td>68</td>
</tr>
<tr>
<td>A.76</td>
<td>switches -sollimit</td>
<td>68</td>
</tr>
<tr>
<td>A.77</td>
<td>switches -solsout</td>
<td>69</td>
</tr>
<tr>
<td>A.78</td>
<td>switches -tableout</td>
<td>69</td>
</tr>
<tr>
<td>A.79</td>
<td>switches -timelimit</td>
<td>69</td>
</tr>
<tr>
<td>A.80</td>
<td>switches -var.order</td>
<td>69</td>
</tr>
<tr>
<td>A.81</td>
<td>switches -verbose</td>
<td>70</td>
</tr>
<tr>
<td>A.82</td>
<td>switches -X-prop-node</td>
<td>70</td>
</tr>
<tr>
<td>A.83</td>
<td>variables</td>
<td>70</td>
</tr>
<tr>
<td>A.84</td>
<td>variables 01</td>
<td>71</td>
</tr>
<tr>
<td>A.85</td>
<td>variables alias</td>
<td>71</td>
</tr>
<tr>
<td>A.86</td>
<td>variables bounds</td>
<td>72</td>
</tr>
<tr>
<td>A.87</td>
<td>variables constants</td>
<td>72</td>
</tr>
<tr>
<td>A.88</td>
<td>variables discrete</td>
<td>72</td>
</tr>
<tr>
<td>A.89</td>
<td>variables sparse.bounds</td>
<td>73</td>
</tr>
<tr>
<td>A.90</td>
<td>variables vectors</td>
<td>73</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction to Minion

Minion is a solver for constraint satisfaction problems. First we introduce constraints, then give a general overview of Minion. Following this we give instructions for installation and basic use.

1.1 What are constraints?

Constraints are a powerful and natural means of knowledge representation and inference in many areas of industry and academia. Consider, for example, the production of a university timetable. This problem’s constraints include: the maths lecture theatre has a capacity of 100 students; art history lectures require a venue with a slide projector; no student can attend two lectures simultaneously. Constraint solving of a combinatorial problem proceeds in two phases. First, the problem is modelled as a set of decision variables, and a set of constraints on those variables that a solution must satisfy. A decision variable represents a choice that must be made in order to solve the problem. The domain of potential values associated with each decision variable corresponds to the options for that choice. In our example one might have two decision variables per lecture, representing the time and the venue. For each class of students, the time variables of the lectures they attend may have an AllDifferent constraint on them to ensure that the class is not timetabled to be in two places at once. The second phase consists of using a constraint solver to search for solutions: assignments of values to decision variables satisfying all constraints. The simplicity and generality of this approach is fundamental to the successful application of constraint solving to a wide variety of disciplines such as scheduling, industrial design and combinatorial mathematics [11].

To illustrate, figure 1.1 shows a simple puzzle, where two six-digit numbers (DONALD and GERALD) are added together to form another six-digit number (ROBERT). Each letter A, B, D, E, G, L, N, O, R and T represents a distinct digit 0 . . . 9. The puzzle can be represented with the expressions below, given by Bessière and Régin [2].

\[100000 \times D + 10000 \times O + 1000 \times N + 100 \times A + 10 \times L + D \]
CHAPTER 1. INTRODUCTION TO MINION

Donald + Gerald = Robert

Figure 1.1: Alphametic problem

\[\begin{align*}
+100000 \times G &+ 10000 \times E + 1000 \times R + 10 \times A + 1 \times L + D \\
= 100000 \times R &+ 10000 \times O + 1000 \times B + 10 \times E + 1 \times R + T \\
\text{and allDifferent}(A, B, D, E, G, L, N, O, R, T)
\end{align*}\]

This representation of the puzzle illustrates the main concepts of constraint programming. A, B, D, E, G, L, N, O, R and T are variables, each with initial domain 0 . . . 9. There are two constraints, one representing the sum and the other representing that the variables each take a different value. A solution is a function mapping each variable to a value in its initial domain, such that all constraints are satisfied. The solution to this puzzle is A=4, B=3, D=5, E=9, G=1, L=8, N=6, O=2, R=7, T=0.

Constraints are declarative — the statement of the problem and the algorithms used to solve it are separated. This is an attractive feature of constraints, since it can reduce the human effort required to solve a problem. Various general purpose and specialized algorithms exist for solving systems of constraints. A great variety of problems can be expressed with constraints. The following list of subject areas was taken from CSPLib [5]:

- Scheduling (e.g. job shop scheduling [7]),
- Design, configuration and diagnosis (e.g. template design [8]),
- Bin packing and partitioning (e.g. social golfer problem [4]),
- Frequency assignment (e.g. the golomb ruler problem [9]),
- Combinatorial mathematics (e.g. balanced incomplete block design [3]),
- Games and puzzles (e.g. maximum density still life [10]),
- Bioinformatics (e.g. discovering protein shapes [6]).

1.2 Solving constraint problems

The classical constraint satisfaction problem (CSP) has a finite set of variables, each with a finite domain, and a set of constraints over those variables. A solution to an instance of CSP is an assignment to each variable, such that all constraints are simultaneously satisfied — that is, they are all true under the assignment. Solvers typically find one or all solutions, or prove there are no solutions. The decision problem (*does there
exist a solution?) is NP-complete [1], therefore there is no known polynomial-time procedure to find a solution.

The most common technique (and the one used by Minion) is to interleave splitting (also called branching) and propagation. Splitting is the basic operation of search, and propagation simplifies the CSP instance. Apt views the solution process as the repeated transformation of the CSP until a solution state is reached [1]. In this view, both splitting and propagation are transformations, where propagation simplifies the CSP by removing values which cannot take part in any solution. A splitting operation transforms a CSP instance into two or more simpler CSP instances, and by recursive application of splitting any CSP can be solved.

Since splitting is an exponential-time solution method, it is important that splitting is minimized by effective propagation. Much effort has gone into developing propagation algorithms which are fast and effective in removing values. Most propagation algorithms are specialized to particular types of constraint (e.g. a vector of variables take distinct values in any solution, the AllDifferent constraint). They typically run in polynomial time.

Figure 1.2 is a simple representation of how many constraint solvers (including Minion) work. The search element is typically depth-first chronological backtracking by default, although a solver will often allow different search algorithms to be programmed. When searching, a variable and value must be selected. This can be done statically or with a dynamic heuristic. The simplify component contains a queue of constraints which need to be propagated. When a constraint is propagated, and removes values from the variable domains, the domain events cause other constraints to be added to the queue. Propagation of constraints on the queue is iterated until the queue is empty.
1.3 Minion

Minion accepts a file describing an instance of CSP, and solves it as described above. From the user’s point of view, the most important features are the set of constraints Minion can reason with, and the types of variables which are supported. These are described later in this document. This section deals with installing Minion and getting started with it.

1.3.1 Installing Minion

The main Minion website is http://minion.sourceforge.net/, and this contains links to the download page. Currently, executables with and without debug information are provided for Mac, Linux, Cygwin, and Windows1.

1.3.2 Installation instructions for Windows

Download the Windows archive minion-x.y.z-windows.tar.gz and unpack, you should find Minion executable minion.exe. The executable should work from the Windows command shell cmd.exe. Minion requires the Microsoft Visual C++ Redistributable Package2 to work.

Alternatively, you can get the archive minion-x.y.z-cygwin.tar.gz which also contains some additional required DLL files.

1.3.3 Installation instructions for Mac

Download the Mac archive minion-x.y.z-mac.tar.gz and unpack. The contents include universal binary minion which should work on both Intel and PowerPC Macs with Mac OS X 10.4.2 or later.

1.3.4 Installation instructions for Linux-x86 or x64

Download the Linux archive minion-x.y.z-linux.tar.gz and unpack. It contains the binary minion. The executable is linked statically.

All versions come with a debug variant as well. The debug executables are contained in the minion-x.y.z-debug-<os>.tar.gz.

1.3.5 Compilation instructions

If there is no executable which works on your computer, you can use the source package (named minion-x.y.z-source.tar.gz).

1The Windows binaries currently do not support compressed input files.

Minion uses the CMake3 build system to check for the required and optional components. Without any additional flags, the standard binary will be built. The earliest version of CMake the build was tested with is 2.4.7.

Note that you need at least g++ version 3.4.2 to compile Minion. Furthermore boost4 is required to build Minion. Any version between 1.33 and 1.39.0 inclusive should work. If you have installed boost in a non-standard location or CMake does not find it for some other reason, you can try setting the environment variable BOOST_ROOT to your boost installation directory for CMake 2.6, or Boost_INCLUDE_DIR to the location of the boost header files for CMake 2.4.

The g++ distributed with Cygwin does not compile Minion correctly because of differences in exception handling in Unix and Windows. You have to compile your own version of g++ and use this to compile Minion.

To compile, create a new directory for the build, and issue the following commands on Unix:

```
cmake <path/to/minion>
make minion
```

where `<path/to/minion>` is the path to the Minion distribution (the directory which contains `CMakeLists.txt`). The Cygwin version of CMake seems to have a bug; run it twice to get Minion to compile and link correctly.

On Windows, use CMake to generate Visual Studio project files. You can then open the project file in Visual Studio and compile it. The build was tested with Visual Studio 9 2008.

If you have at least 2GB of RAM and a dual-core processor, you may prefer to use

```
make minion -j2
```

instead. As a rule of thumb, you should have 1GB of RAM for every compile process. To build minion-debug, run

```
cmake -DDEBUG=1 <path/to/minion>
```

instead of

```
cmake <path/to/minion>
```

CMake caches the configuration between runs. If you built the debug binary first and then want to build the non-debug version, you have to explicitely disable that option, i.e. run

```
cmake -DDEBUG=0 <path/to/minion>
```

More details on compile-time options can be found in section 2.3.

3http://www.cmake.org
4http://www.boost.org/
1.3.6 Trying out the executable

On all platforms, Minion needs to be run from a command shell so that the output can be seen. If you go to the Minion directory in a shell and run the executable, it should output version information and a help message.

1.3.7 The debug variant

One would normally use the non-debug variant of minion, which runs at full speed. However, if some unexpected behaviour is observed, running the debug variant may be helpful. It contains a large number of assertions and other checks, and may bring to light a problem with the input or an internal bug.

The CMake constants you should set to 1 to get a binary suitable for debugging are `DEBUG` and `INFO`.

1.3.8 Minion online help

To see the root page of the help system, run Minion with `help` as the only argument. The help system is hierarchical, with the following top-level categories: constraints, input, switches and variables, with contents as follows:

- **constraints** This category contains a description of every constraint which is allowed in the input CSP.
- **input** Information about the input file format.
- **switches** Information about command-line switches.
- **variables** A description of each type of CSP variable supported in Minion.

To access the help for the alldiff constraint, for example, the command would be `minion help constraints alldiff`. The full documentation provided by the Minion executable is reproduced in the Appendix of this manual.

1.3.9 Basic Minion use

As a simple example of Minion input, we modelled the alphametic puzzle in figure 1.1. The Minion input file shown below consists of two sections: the variables, in which the 10 CSP variables are declared along with their initial domains; and the constraints. The alldifferent constraint in the example above is mapped into gacalldiff here. The numerical constraint is translated into two constraints as follows: \(x + y - z \leq 0\) and \(x + y - z \geq 0\) and these two are represented using weightedsumleq and weightedsumgeq respectively. The coefficients are specified first, with the coefficients of ROBERT negated, followed by the list of variables.

VARIABLES
DISCRETE a {0..9}
DISCRETE b {0..9}
DISCRETE d {0..9}
DISCRETE e {0..9}
DISCRETE g {0..9}
DISCRETE l {0..9}
DISCRETE n {0..9}
DISCRETE o {0..9}
DISCRETE r {0..9}
DISCRETE t {0..9}

CONSTRAINTS

gacalldiff([a,b,d,e,g,l,n,o,r,t])

weightedsumleq([100000,10000,1000,100,10,1,100000,10000,1000,100,10,1,-100000,-10000,-1000,-100,-10,-1],
[d,o,n,a,l,d,g,e,r,a,l,d,r,o,b,e,r,t],0)

weightedsumgeq([100000,10000,1000,100,10,1,100000,10000,1000,100,10,1,-100000,-10000,-1000,-100,-10,-1],
[d,o,n,a,l,d,g,e,r,a,l,d,r,o,b,e,r,t],0)

EOF

This example is in the Minion distribution, in directory benchmarks/small. Executing
minion benchmarks/small/donaldgeraldrobert.minion gives the solution $A = 4, B = 3, D = 5, E = 9, G = 1, L = 8, N = 6, O = 2, R = 7, T = 0$.
Chapter 2

Minion Internals

This chapter explains several details about Minion’s internals, which are useful to know when trying to get the most from Minion.

2.1 Variable Types

Minion’s input language is purposefully designed to map exactly to Minion’s internals. Unlike most other constraint solvers, Minion does not internally add extra variables and decompose large complex constraints into small parts. This provides complete control over how problems are implemented inside Minion, but also requires understanding how Minion works to get the best results.

For those who, quite reasonably, do not wish to get involved in such details, 'Tailor’ abstracts away from these details, and also internally implements a number of optimisations.

One of the most immediately confusing features of Minion are the variable types. Rather than try to provide a “one-size-fits-all” variable implementation, Minion provides four different ones; BOOL, DISCRETE, BOUND and SPARSEBOUND. First we shall provide a brief discussion of both what these variables are, and a brief discussion of how they are implemented currently.

BOOL Variables with domain \{0, 1\}. Uses special optimised data structure.

DISCRETE Variables whose domain is a range of integers. Memory usage and the worst-case performance of most operations is \(O(\text{domain size})\). Allows any subset of the domain to be represented.

BOUND Variable whose domain is a range of integers. Memory usage and the worst-case performance of all operations is \(O(1)\). During search, the domain can only be reduced by changing one of the bounds.

SPARSEBOUND Variable whose domain is an arbitrary range of integers. Otherwise identical to BOUND.
It appears one obvious variable implementation, \textsc{sparsediscrete}, is missing. This did exist in some very early versions of Minion but due to bugs and lack of use was removed.

Some of the differences between the variable types only effect performance, whereas some others can effect search size. We provide these here.

1. In any problem, changing a \textsc{bool} variable to a \textsc{discrete}, \textsc{bound} or \textsc{sparsebound} variable with domain \{0, 1\} should not change the size of the resulting search. \textsc{bool} should always be fastest, followed by \textsc{discrete}, \textsc{bound} and \textsc{sparsebound}.

2. A \textsc{bound} variable will in general produce a search with more nodes per second, but more nodes overall, than a \textsc{discrete} variable.

3. Using \textsc{sparsebound} or \textsc{bound} variables with a unary constraint imposing the sparse domain should produce identical searches, except the \textsc{sparsebound} will be faster if the domain is sparse.

As a basic rule of thumb, Always use \textsc{bool} for Boolean domains, \textsc{discrete} for domains of size up to around 100, and the \textsc{bound}. With \textsc{discrete} domains, use the w-inset constraint to limit the domain. When to use \textsc{sparsebound} over \textsc{bound} is harder, but usually the choice is clear, as either the domain will be a range, or a set like \{1, 10, 100, 100\}.

2.2 Choosing Between Minion’s Constraints

Minion has many constraints which at first glance appear to do almost identical things. These each have trade-offs, some of which are difficult to guess in advance. This section will provide some basic guidance.

One of the major design decisions of Minion’s input language is that it provides in the input language exactly what it provides internally. Unlike most other constraint solvers, Minion does not break up constraints into smaller pieces, introduce new variables or simplify or manipulate constraints. This provides complete control over how Minion represents your problem, but also leads to a number of annoyances.

Probably the first thing you will notice it that Minion has neither a “sum equals” or “weighted sum equals” constraint. This is because the most efficiently we could implement such a constraint was simply by gluing together the sumleq and the sumgeq constraints. Minion could provide a wrapper which generated the two constraints internally, but this would go against the transparency. Of course if in the future a more efficient implementation of sumeq was found, it may be added.

The \texttt{watchsumgeq} and \texttt{watchsumleq} are variants on the algorithm used to implement SAT constraints. They are faster than \texttt{sumleq} and \texttt{sumgeq}, but only work when summing a list of Booleans to a constant. Further \texttt{watchsumgeq} performs best when the value being summed to is small, and \texttt{watchsumleq} works best when the value being summed to is close to the size of the input vector.

Minion does not attempt to simplify constraints, so constraints such as \texttt{sumgeq([a, a, a], 3)} are not simplified to \texttt{sumgeq([a], 3)}. This kind of simplification, done by hand,
will often improve models. Further, and importantly in practice, Minion pre-allocates memory based on the initial domain size of variables. If these are excessively slack, this can hurt performance throughout search.

Some constraints in Minion do not work on BOUND and SPARSEBOUND variables, in particular gacalldiff and watchelement. These two constraints are in general better when they can be used.

2.3 Compile-time options

There are a number of flags which can be given to Minion at compile time to affect the resulting executable. These flags are prone to regular changes. By searching the Minion source code, you may find others. These undocumented ones are prone to breakage without warning.

The following flags are considered "blessed", and are fully tested (although in future versions they may be removed or altered). Adding any of these flags will probably slow the resulting Minion executable.

All of these flags have to be passed to `cmake` with the `-D` switch; for example

```
make -DNAME=MyMinion <path/to/minion>
```

Again, keep in mind that `cmake` caches its configuration – if you run it again without specifying `NAME`, it will assume the name you have given before and not the default.

NAME=name Overrides Minion’s default and names the executable name.

DEBUG=1 Turns on a large number of internal consistency checks in minion. This executable is much slower than normal minion, but vital when trying to debug problems.

SLOW_DEBUG=1 Turns on even more internal checking; the resulting executable will be much slower than standard Minion.

PRINT=1 (Only meaningful with **DEBUG=1**) Turns on more printing of information.

QUICK=1 For optimisation reasons, Minion usually compiles many copies of every constraint. This flag makes Minion compile each constraint only once. This drastically reduces the time to compile and the size of the executable, but the resulting executable is slower. This should never effect the results Minion produces.

INFO=1 Makes minion output a large, but poorly documented, set of information about how search is progressing. This flag is useful for debugging but should not be used for trying to following search (use the command line flag `dumpsearch` instead). This option is likely to be replaced with a more useful dump of search in a future version of Minion.

UNOPTIMISED=1 Turn off all compiler optimisation, so Minion can be usefully checked in `gdb`.
CHAPTER 2. MINION INTERNALS

PROFILE=1 Set compiler optimisation flags that allow Minion to be better profiled. Implies **UNOPTIMISED=1**.

GPROF=1 (Only meaningful with **PROFILE=1**) Set compiler flags to profile the binary with gprof.

REENTER=1 Compile Minion so it is reenterent (more than one problem can exist in memory at a time). At present reenterence is not used for anything, and will only slightly slow Minion.

THREADSAFE=1 Compile thread-safe Minion. Does not have any effect right now.

SMALL=1 Build a small binary by passing –Os to the compiler.

WDEG=1 Enable weighted degree variable heuristic. This may or may not speed up Minion.

WTRIG=1 Enable a weighted queue of triggers which will process the cheapest trigger first. This only affects triggers of the same type. This may or may not speed up Minion.

BACK_VEC=1 Keep backtrack memory in a vector instead of a continuous block of memory.

CACHE_MALLOC=1 (Only meaningful with **BACK_VEC=1**) Enable caching malloc.

DISTCC=1 Use distcc (if found). Experimental.

Furthermore the environment variable $CPU is taken into account when running cmake. The contents of this variable are passed on to the compiler without any processing; usually one would want to use it as a means of specifying machine-specific compiler flags, such as producing code for a specific CPU.

2.3.1 Required and optional components

Boost is required to build Minion (at least version 1.33). Bzip2 and Zlib are optional, if they are not present, you will not be able to read compressed input files. If a Common Lisp binary (clisp) is found, you will be able to build the LISP generators. If you have a doxygen executable, you will be able to generate the API documentation. If you have a pdflatex executable and a UNIX-like system, you will be able to generate the PDF documentation.

2.3.2 Selective compilation of constraints

The most time-consuming part of the Minion compilation process is the compilation of all the constraints. If not all constraints are required, the user may specify the constraints to be compiled into the binary in two ways.

When running cmake one can give it the –DCONSTRAINTS="<list>" flag to specify the semicolon-separated list of constraints to be compiled, e.g.
cmake -DCONSTRAINTS="sumleq;sumgeq" <path/to/minion>

Alternatively, one can specify the name of a Minion input file or a file containing a list of constraints with the -DCONSTRAINTS_FILE=<file> option, e.g.

cmake -DCONSTRAINTS_FILE=input.minion <path/to/minion>

Note that this does not work with compressed input files.
Chapter 3

Minion in Practice

The previous chapter clearly outlined what the constructs of a Minon file are, including what the variable types are and which type of constraint should be used when. This chapter takes a more practical role, outlined within are 7 minion example files which are clearly commented so that the user can see what a minion file looks like in practice. Comments in minion start with a ♯, however for reasons of ease of reading all lines of actual code be it Minion or Essence’ are shown in typewriter text and comments are inserted in normal text. The first file is a modified version of the one that all the minion developers turn to when modelling a new problem in minion. It shows exactly what a minion file can include and what the syntax is for all the possible sections. If you are modelling a problem as minion than we recommend you take a copy of this file and edit it appropriately, as this will help to guide you through the modelling process. The rest of this chapter contains versions of the minion input examples introduced in the Tailor chapter of this manual. These are all produced automatically by tailor from the Essence’ specification given in that chapter. We hope the comments will clarify exactly what these files mean. These examples can be used as the bases to implement any similar problems. The Minion overview is completed in the last chapter where a full list of all the constraints is given, including a brief overview of how each operates.

3.1 Minion Example File

This file does not really relate to any English problem description, although it does parse and run, it is an example which clearly shows all of the possible Minion input file constructs. If you are modelling a problem as minion than we recommend you take a copy of this file and edit it appropriately, as this will help to guide you through the modelling process. It can be found in the

summer_school
directory and is called

format_example.minion
we have added comments to explain the different sections to the novice user.

VARIABLES

There are 4 type of variables. Booleans don’t need a domain and are formated as follows:

`BOOL bo`

Internally, Bound variables are stored only as a lower and upper bound whereas discrete variables allow any sub-domain. Bound variables need a domain given as a range as follows:

`BOUND b {1..3}`

Discrete vars also need a domain given as a range as follows:

`DISCRETE d {1..3}`

Sparse bound variables take a sorted list of values as follows:

`SPARSEBOUND s {1,3,6,7}`

We can also declare matrices of variables. The first example is a matrix with 3 variables: q[0], q[1] and q[2].

`DISCRETE q[3] {0..5}`

The second example is of a 2d matrix, where the variables are bm[0,0], bm[0,1], bm[1,0], bm[1,1].

`BOOL bm[2,2]`

The third example shows how to declare a matrix with more indices. You can have as many indices as you like!

`BOOL bn[2,2,2,2]`

In this next section, which is optional, you can define tuplelists. Tuplelists provide a method of defining sets of tuples which can then be used in table and negativetable constraints. Defining these in a **TUPLELIST** does not change the search, but can save memory by reusing the same list of tuples in multiple constraints. The input is: ⟨name⟩ ⟨num_of_tuples⟩ ⟨tuple_length⟩ ⟨numbers...⟩.
TUPLELIST

Fred 3 3
0 2 3
2 0 3
3 1 3

The next thing to declare are the constraints which go in this section.

CONSTRAINTS

Constraints are defined in the same way as functions are in most programming paradigms! A complete list of constraints can be found at the end of the manual. The two following constraints very simply set bo=0 and b=d.

\[
eq(bo, 0)\]
\[
eq(b, d)\]

Note that except in special cases (the reify and reifyimply constraints), Minion constraints cannot be nested. For example \(\eq(\eq(bo, 0), d)\) is not valid. Such constraints must be written by manually adding extra variables.

To get a single variable from a matrix, you index it with square brackets using commas to delimitate the dimensions of the matrix. The first example following is a 1D matrix, the second in 4D.

\[
eq(q[1], 0)\]
\[
eq(bn[0,1,1,1], bm[1,1])\]

It’s easy to get a row or column from a matrix. You use _ in the indices you want to vary. Giving a matrix without an index simply gives all the variables in that matrix. The following shows how flattening occurs...

\[
[bn] == [bm[_,_]] == [bn[0,0], bm[0,1], bm[1,0], bm[1,1]]
\]
\[
[bn[_,1]] == [bn[0,1], bm[1,1]]
\]
\[
[bn[1,_,0,_]] == [bn[1,0,0,0], b[1,0,0,1], b[1,1,0,0], b[1,1,0,1]]
\]

You can string together a list of such expressions as in the following example:

\[
\text{lexleq([bn[1,_,0,_], bo, q[0]], [b, bm, d])}
\]

So the parser can recognise them you must always put [] around any matrix expression, so lexleq(bm, bm) is invalid, but the following is valid:

\[
\text{lexleq([bm], [bm])}
\]

An example of a constraint which uses tuples

\[
\text{table([q], Fred)}
\]

You do not have to pre-declare tuples, you can write them explicitly if you wish. The above constraint for example is equivalent to:

\[
\text{table([q], \{ <0,2,3>,<2,0,3>,<3,1,3> \})}
\]
The last section is the search section. This section is optional, and allows some limited control over the way minion searches for a solution. Note that everything in this section can be given at most once.

SEARCH

You give the variable ordering by listing each of the variables in the order you wish them to be searched. You can either list each of the variables in a matrix individually by giving the index of each variable, or you can just state the matrix in which case it goes through each of the variables in turn. If you miss any of the variables out than these variables are not branched on. Note that this can lead to Minion reporting invalid solutions, so use with care! If you don’t give an explicit variable ordering, than one is generated based on the order the variables are declared. If you give a \-varorder on the command line, that will only consider the variable given in the VARORDER.

VARORDER \[bo, b, d, q[_]\]

You give the value order for each variable as either \(a\) for ascending or \(d\) for descending. The value orderings are given in the same order as the variable ordering. For example, to make the variable \(b\) by searched in descending order you make the second term into a \(d\) as the above variable ordering shows it to be the second variable to be searched. The default variable order is ascending order for all variables.

VALORDER \[a, a, d, a]\]

You can have one objective function which can be either to maximise or minimise any single variable. To minimise a constraint, you should assign it equal to a new variable.

MAXIMISING bo
MINIMISING x3

The print statement takes a 2D matrix of things to print. The following example prints both the variables bo and q, putting these in double square brackets turns them into a 2D matrix so they are acceptable input. You can also give: PRINT ALL (the default) which prints all variables and PRINT NONE which turns printing off completely.

PRINT \[[bo, q] \]

The file must end with the **EOF** marker! Any text under that is ignored, so you can write whatever you like (or nothing at all...)

EOF

The only remaining part of Minion’s input language are its many constraints. These are listed in the Appendix.
3.2 The Farmers Problem

The Farmers Problem is a very simple problem which makes a very good example to be the first CP that you model. The problem is as follows: A farmer has 7 animals on his farm: pigs and hens. They all together have 22 legs. How many pigs (4 legs) and how many hens (2 legs) does the farmer have? These files can be found in /summer_school/examples. The Essence' file is named FarmersProblem.eprime and the Minion file is FarmersProblem.minion.

The Essence' specification of this (which was explained in detail in the Tailor section is as follows:

```plaintext
find pigs, hens: int(0..7)
such that

pigs + hens = 7,
pigs * 4 + hens * 2 = 22
```

The Minion input file for this is:

```plaintext
MINION 3
```

There are two variables pigs and hens both have domain 0..7

VARIABLES
DISCRETE pigs {0..7}
DISCRETE hens {0..7}

Both variables pigs and hens should be printed and the variable ordering is search pigs than hens.

SEARCH
PRINT [[pigs],[hens]]
VARORDER [pigs,hens]

CONSTRAINTS

The following two constraints relate to the following \((pigs \times 4) + (hens \times 2) = 22\). There is no weighted sum constraint in Minion so you should use the weighted sum less than and equal to constraint and the weighted sum greater than and equal to constraint. You read this as \((hens \times 2) + (pigs \times 4) \leq 22\) and \((hens \times 2) + (pigs \times 4) \geq 22\).

```plaintext
weightedsumgeq([2,4], [hens,pigs], 22)
weightedsumleq([2,4], [hens,pigs], 22)
```
The following two constraints relate to the following $\text{pigs} + \text{hens} = 7$. There is no sum constraint in Minion so you should use the sum less than and equal to constraint and the sum greater than and equal to constraint. You read this as $\text{hens} + \text{pigs} \leq 7$ and $\text{hens} + \text{pigs} \geq 7$.

\begin{verbatim}
sumleq([hens,pigs], 7)
sumgeq([hens,pigs], 7)
EOF
\end{verbatim}

3.3 Cryptarithmetic

The second problem outlined is a very famous Cryptarithmetic puzzle: $\text{SEND} + \text{MORE} = \text{MONEY}$. These files can be found in `/summer_school/examples` the Essence’ file is `SENDMOREMONEY.eprime` and the Minion file is `SENDMOREMONEY.minion`. The Essence’ specification is as follows:

\begin{verbatim}
find S,E,N,D,M,O,R,Y : int(0..9)
such that
1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =
10000*M + 1000*O + 100*N + 10*E + Y,
alldiff([S,E,N,D,M,O,R,Y])
\end{verbatim}

The Minion model is then:

```
MINION 3
```

There are 8 variables: S,E,N,D,M,O,R,Y all with domains 0 to 9.

```
**VARIABLES**
DISCRETE S (0..9)
DISCRETE E (0..9)
DISCRETE N (0..9)
DISCRETE D (0..9)
DISCRETE M (0..9)
DISCRETE O (0..9)
DISCRETE R (0..9)
DISCRETE Y (0..9)
```

Search the variables in the order S, E, N, D, M, O, R, Y and print the same variable in this order.

```
**SEARCH**
```
CHAPTER 3. MINION IN PRACTICE

PRINT [[S],[E],[N],[D],[M],[O],[R],[Y]]
VARORDER [S,E,N,D,M,O,R,Y]

The first constraint is an all different which is across all variables this is an implicit constraint in the problem, as all the letters represent different numbers.

CONSTRAINTS
alldiff([S,E,N,D,M,O,R,Y])

The second constraint represents:
\[(1000 \times S) + (100 \times E) + (10 \times N) + D + (1000 \times M) + (100 \times O) + (10 \times R) + E = (10000 \times M) + (100 \times O) + (100 \times N) + (10 \times E) + Y.\]
The first thing the model does is rewrite this expression to make it equal to a number, in this case 0. So this expression becomes:
\[(10000 \times M) + (1000 \times O) + (100 \times N) + (10 \times E) + Y - (1000 \times S) - (100 \times E) - (10 \times N) - D - (1000 \times M) - (100 \times O) - (10 \times R) - E = 0.\]
The terms are then rearranged so the same weights are together and the positive numbers are first this then becomes:
\[Y + (10 \times E) + (100 \times N) + (1000 \times O) + (10000 \times M) - D - E - (10 \times N) - (10 \times R) - (100 \times E) - (100 \times O) - (100 \times M) - (1000 \times S) = 0.\]
Minion does not have a weighted sum equals constraint, so this is represented as one weighted sum less than or equal to and one weighted sum greater than or equal to. The two constraints are then:
\[Y + (10 \times E) + (100 \times N) + (1000 \times O) + (10000 \times M) - D - E - (10 \times N) - (10 \times R) - (100 \times E) - (100 \times O) - (100 \times M) - (1000 \times S) \leq 0\]
\[Y + (10 \times E) + (100 \times N) + (1000 \times O) + (10000 \times M) - D - E - (10 \times N) - (10 \times R) - (100 \times E) - (100 \times O) - (100 \times M) - (1000 \times S) \geq 0.\]

EOF

3.4 The Eight Number Puzzle

The eight number puzzle asks you to label the nodes of the graph shown in Figure 3.1 with the values 1 to 8 such that no two connected nodes have consecutive values. These files can be found in /summer_school/examples the Essence’ file is EightPuzzleDiagram.eprime and the Minion file is EightPuzzleDiagram.minion. The Essence’ specification is as follows:

find circles: matrix indexed by [int(1..8)] of int(1..8)
such that
Figure 3.1: Graph which represents The Eight Number Puzzle

The Minion model is then:

```
alldiff(circles),
| circles[1] - circles[2] | > 1,  
| circles[1] - circles[3] | > 1,  
| circles[1] - circles[4] | > 1,  
| circles[5] - circles[8] | > 1,  
| circles[6] - circles[8] | > 1,  
```

There is a 1d matrix of size 8 with domain \{1,...,8\} to represent the 8 circles which numbers can be allocated to. There are also 34 auxiliary variables, 2 to represent each constraint.
VARIABLES

VARIABLES

DISCRETE circles[8] {1..8}

auxiliary variables
DISCRETE aux0 {-7..7}
DISCRETE aux1 {0..7}
DISCRETE aux2 {-7..7}
DISCRETE aux3 {0..7}
DISCRETE aux4 {-7..7}
DISCRETE aux5 {0..7}
DISCRETE aux6 {-7..7}
DISCRETE aux7 {0..7}
DISCRETE aux8 {-7..7}
DISCRETE aux9 {0..7}
DISCRETE aux10 {-7..7}
DISCRETE aux11 {0..7}
DISCRETE aux12 {-7..7}
DISCRETE aux13 {0..7}
DISCRETE aux14 {-7..7}
DISCRETE aux15 {0..7}
DISCRETE aux16 {-7..7}
DISCRETE aux17 {0..7}
DISCRETE aux18 {-7..7}
DISCRETE aux19 {0..7}
DISCRETE aux20 {-7..7}
DISCRETE aux21 {0..7}
DISCRETE aux22 {-7..7}
DISCRETE aux23 {0..7}
DISCRETE aux24 {-7..7}
DISCRETE aux25 {0..7}
DISCRETE aux26 {-7..7}
DISCRETE aux27 {0..7}
DISCRETE aux28 {-7..7}
DISCRETE aux29 {0..7}
DISCRETE aux30 {-7..7}
DISCRETE aux31 {0..7}
DISCRETE aux32 {-7..7}
DISCRETE aux33 {0..7}

The variable ordering branches on all the circle variables before each of the aux variables. Only the circle variables are printed.

SEARCH

PRINT [circles]
VARORDER [circles,
aux0,aux1,aux2,aux3,aux4,aux5,aux6,aux7,
aux8,aux9,aux10,aux11,aux12,aux13,aux14,aux15,
aux16,aux17,aux18,aux19,aux20,aux21,aux22,aux23,
aux24,aux25,aux26,aux27,aux28,aux29,aux30,aux31,
aux32,aux33]

The all different constraint on the circle variables are explicit in the problem, this is the first constraint in the collection. The other constraints are all of the type \(|circles[a] - circles[b]| > 1\). The first of these such constraints is \(|circles[1] - circles[2]| > 1\) this type of constraint is represented by a series of 4 constraints in Minion. The constraints are reversed in the Minion specification so that the last 4 constraints represent this first expression. The constraints are indexed from 1 in Essence’ and 1 in Minion, so the above constraint becomes \(|circles[0] - circles[1]| > 1\). Then \(|circles[0] - circles[1]| > 1\) is decomposed to \(circles[1] - circles[2] = aux0\) and \(|aux0| = aux1\) and \(1 \leq aux1 - 1\). As Minion has no weighted sum equals to constraint a weighted sum greater than or equals to constraint and a weighted sum less than or equals to, so \(circles[1] - circles[2] = aux0\) is \(circles[1] - circles[2] \leq aux0\) and \(circles[1] - circles[2] \geq aux0\). The other constraints all form the same pattern.

CONSTRAINTS

alldiff([circles])

weightedsumgeq([1,-1], [circles[6],circles[7]], aux32)
weightedsumleq([1,-1], [circles[6],circles[7]], aux32)
abs(aux33,aux32)
ineq(1,aux33,-1)

weightedsumgeq([1,-1], [circles[5],circles[7]], aux30)
weightedsumleq([1,-1], [circles[5],circles[7]], aux30)
abs(aux31,aux30)
ineq(1,aux31,-1)

weightedsumgeq([1,-1], [circles[4],circles[7]], aux28)
weightedsumleq([1,-1], [circles[4],circles[7]], aux28)
abs(aux29,aux28)
ineq(1,aux29,-1)

weightedsumgeq([1,-1], [circles[5],circles[6]], aux26)
weightedsumleq([1,-1], [circles[5],circles[6]], aux26)
abs(aux27,aux26)
ineq(1,aux27,-1)

weightedsumgeq([1,-1], [circles[4],circles[5]], aux24)
weightedsumleq([1,-1], [circles[4],circles[5]], aux24)
abs(aux25,aux24)
ineq(1,aux25,-1)

weightedsumgeq([1,-1], [circles[3],circles[6]], aux22)
weightedsumleq([1,-1], [circles[3],circles[6]], aux22)
abs(aux23,aux22)
\begin{verbatim}
ineq(1, aux23, -1)
weightedsumgeq([[1, -1], [circles[3], circles[5]]], aux20)
weightedsumleq([[1, -1], [circles[3], circles[5]]], aux20)
abs(aux21, aux20)
inseq(1, aux21, -1)
weightedsumgeq([[1, -1], [circles[2], circles[6]]], aux18)
weightedsumleq([[1, -1], [circles[2], circles[6]]], aux18)
abs(aux19, aux18)
inseq(1, aux19, -1)
weightedsumgeq([[1, -1], [circles[2], circles[4]]], aux16)
weightedsumleq([[1, -1], [circles[2], circles[4]]], aux16)
abs(aux17, aux16)
inseq(1, aux17, -1)
weightedsumgeq([[1, -1], [circles[1], circles[5]]], aux14)
weightedsumleq([[1, -1], [circles[1], circles[5]]], aux14)
abs(aux15, aux14)
inseq(1, aux15, -1)
weightedsumgeq([[1, -1], [circles[1], circles[4]]], aux12)
weightedsumleq([[1, -1], [circles[1], circles[4]]], aux12)
abs(aux13, aux12)
inseq(1, aux13, -1)
weightedsumgeq([[1, -1], [circles[2], circles[3]]], aux10)
weightedsumleq([[1, -1], [circles[2], circles[3]]], aux10)
abs(aux11, aux10)
inseq(1, aux11, -1)
weightedsumgeq([[1, -1], [circles[0], circles[3]]], aux8)
weightedsumleq([[1, -1], [circles[0], circles[3]]], aux8)
abs(aux9, aux8)
inseq(1, aux9, -1)
weightedsumgeq([[1, -1], [circles[0], circles[2]]], aux6)
weightedsumleq([[1, -1], [circles[0], circles[2]]], aux6)
abs(aux7, aux6)
inseq(1, aux7, -1)
weightedsumgeq([[1, -1], [circles[0], circles[1]]], aux4)
weightedsumleq([[1, -1], [circles[0], circles[1]]], aux4)
abs(aux5, aux4)
inseq(1, aux5, -1)
weightedsumgeq([[1, -1], [circles[0], circles[2]]], aux2)
weightedsumleq([[1, -1], [circles[0], circles[2]]], aux2)
abs(aux3, aux2)
inseq(1, aux3, -1)
weightedsumgeq([[1, -1], [circles[0], circles[1]]], aux0)
weightedsumleq([[1, -1], [circles[0], circles[1]]], aux0)
abs(aux1, aux0)
inseq(1, aux1, -1)
\end{verbatim}
3.5 A $K_4 \times P_2$ Graceful Graph

This problem is stated as follows. A labelling f of the nodes of a graph with q edges is graceful if f assigns each node a unique label from 0, 1, ..., q and when each edge xy is labelled with $|f(x) - f(y)|$, the edge labels are all different. (Hence, the edge labels are a permutation of 1, 2, ..., q.) Does the $K_4 \times P_2$ graph shown in Figure 3.2 have a graceful library. These files can be found in /summer_school/examples, the Essence’ file is called K4P2GracefulGraph.eprime and the Minion file is K4P2GracefulGraph.minion. The Essence’ specification is as follows:

```
find nodes : matrix indexed by [int(1..8)] of int(0..16),
    edges: matrix indexed by [int(1..16)] of int(1..16)

such that

```

Figure 3.2: A $K_4 \times P_2$ Graph
The Minion model is then:

VARIABLES

DISCRETE nodes[8] {0..16}
DISCRETE edges[16] {1..16}

auxiliary variables
DISCRETE aux0 {-16..16}
DISCRETE aux1 {-16..16}
DISCRETE aux2 {-16..16}
DISCRETE aux3 {-16..16}
DISCRETE aux4 {-16..16}
DISCRETE aux5 {-16..16}
DISCRETE aux6 {-16..16}
DISCRETE aux7 {-16..16}
DISCRETE aux8 {-16..16}
DISCRETE aux9 {-16..16}
DISCRETE aux10 {-16..16}
DISCRETE aux11 {-16..16}
DISCRETE aux12 {-16..16}
DISCRETE aux13 {-16..16}
DISCRETE aux14 {-16..16}
DISCRETE aux15 {-16..16}

The variable order is to branch on the nodes then on the edges then the auxiliary variables. Only the node and the edge variables are printed.
SEARCH

PRINT [nodes, edges]

VARORDER [nodes, edges, aux0, aux1, aux2, aux3, aux4, aux5, aux6, aux7, aux8, aux9, aux10, aux11, aux12, aux13, aux14, aux15]

Implicit in the problem is an all different constraint on both the node and edge variables. The other constraints are all of the form |nodes[a] - nodes[b]| = edges[a], the first of these constraints from the Essence’ specification is |nodes[1] - nodes[2]| = edges[1] this corresponds to the last three constraints in the minion file as the order of constraints are reversed. Minion starts indexing matrices from 0, whereas Essence’ started numbering from 1 so the above constraint becomes |nodes[0] - nodes[1]| = edges[0]. This is broken into nodes[0] - nodes[1] = aux0 and |edges[0]| = aux0. As minion has no weighted sum equals this is broken into a weighted sum less than or equals to and weighted sum greater than or equals to. So this full constraint is represented as nodes[0] - nodes[1] ≤ aux0 and nodes[0] - nodes[1] ≥ aux0 and |edges[0]| = aux0.

CONSTRAINTS

```
alldiff([nodes])
alldiff([edges])
weightedsumgeq([[1,-1], [nodes[3],nodes[7]]], aux15)
weightedsumleq([[1,-1], [nodes[3],nodes[7]]], aux15)
abs(edges[15],aux15)
weightedsumgeq([[1,-1], [nodes[2],nodes[6]]], aux14)
weightedsumleq([[1,-1], [nodes[2],nodes[6]]], aux14)
abs(edges[14],aux14)
weightedsumgeq([[1,-1], [nodes[1],nodes[5]]], aux13)
weightedsumleq([[1,-1], [nodes[1],nodes[5]]], aux13)
abs(edges[13],aux13)
weightedsumgeq([[1,-1], [nodes[0],nodes[4]]], aux12)
weightedsumleq([[1,-1], [nodes[0],nodes[4]]], aux12)
abs(edges[12],aux12)
weightedsumgeq([[1,-1], [nodes[6],nodes[7]]], aux11)
weightedsumleq([[1,-1], [nodes[6],nodes[7]]], aux11)
abs(edges[11],aux11)
weightedsumgeq([[1,-1], [nodes[5],nodes[7]]], aux10)
weightedsumleq([[1,-1], [nodes[5],nodes[7]]], aux10)
abs(edges[10],aux10)
weightedsumgeq([[1,-1], [nodes[5],nodes[6]]], aux9)
weightedsumleq([[1,-1], [nodes[5],nodes[6]]], aux9)
abs(edges[9],aux9)
weightedsumgeq([[1,-1], [nodes[4],nodes[7]]], aux8)
```
CHAPTER 3. MINION IN PRACTICE

weightedsumleq([1,-1], [nodes[4],nodes[7]], aux8)
abs(edges[8],aux8)
weightedsumgeq([1,-1], [nodes[4],nodes[6]], aux7)
weightedsumleq([1,-1], [nodes[4],nodes[6]], aux7)
abs(edges[7],aux7)
weightedsumgeq([1,-1], [nodes[4],nodes[5]], aux6)
weightedsumleq([1,-1], [nodes[4],nodes[5]], aux6)
abs(edges[6],aux6)
weightedsumgeq([1,-1], [nodes[2],nodes[3]], aux5)
weightedsumleq([1,-1], [nodes[2],nodes[3]], aux5)
abs(edges[5],aux5)
weightedsumgeq([1,-1], [nodes[1],nodes[3]], aux4)
weightedsumleq([1,-1], [nodes[1],nodes[3]], aux4)
abs(edges[4],aux4)
weightedsumgeq([1,-1], [nodes[1],nodes[2]], aux3)
weightedsumleq([1,-1], [nodes[1],nodes[2]], aux3)
abs(edges[3],aux3)
weightedsumgeq([1,-1], [nodes[0],nodes[3]], aux2)
weightedsumleq([1,-1], [nodes[0],nodes[3]], aux2)
abs(edges[2],aux2)
weightedsumgeq([1,-1], [nodes[0],nodes[2]], aux1)
weightedsumleq([1,-1], [nodes[0],nodes[2]], aux1)
abs(edges[1],aux1)
weightedsumgeq([1,-1], [nodes[0],nodes[1]], aux0)
weightedsumleq([1,-1], [nodes[0],nodes[1]], aux0)
abs(edges[0],aux0)

EOF

3.6 The Zebra Puzzle

The Zebra Puzzle is a very famous logic puzzle. There are many different versions, but the version we will answer is as follows:

1. There are five houses.
2. The Englishman lives in the red house.
3. The Spaniard owns the dog.
4. Coffee is drunk in the green house.
5. The Ukrainian drinks tea.
6. The green house is immediately to the right of the ivory house.
7. The Old Gold smoker owns snails.
CHAPTER 3. MINION IN PRACTICE

8. Kools are smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

11. The man who smokes Chesterfields lives in the house next to the man with the fox.

12. Kools are smoked in the house next to the house where the horse is kept.

13. The Lucky Strike smoker drinks orange juice.

15. The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra? In the interest of clarity, it must be added that each of the five houses is painted a different color, and their inhabitants are of different national extractions, own different pets, drink different beverages and smoke different brands of American cigarettes. These files can be found in /summer_school/examples the Essence’ file is zebra.eprime and the Minion file is zebra.minion. The Essence’ specification is as follows:

language ESSENCE’ 1.b.a

$red = colour[1]
$green = colour[2]
$ivory = colour[3]
$yellow = colour[4]
$blue = colour[5]
$Englishman = nationality[1]
$Spaniard = nationality[2]
$Ukranian = nationality[3]
$Norwegian = nationality[4]
$Japanese = nationality[5]
$coffee = drink[1]
$tea = drink[2]
$milk = drink[3]
$orange juice = drink[4]
$Old Gold = smoke[1]
$Kools = smoke[2]
$Chesterfields = smoke[3]
$Lucky Strike = smoke[4]
$Parliaments = smoke[5]
$dog = pets[1]
$snails = pets[2]
$fox = pets[3]
$horse = pets[4]
find colour: matrix indexed by \[\text{int}(1..5)\] of \text{int}(1..5),
nationality: matrix indexed by \[\text{int}(1..5)\] of \text{int}(1..5),
drink: matrix indexed by \[\text{int}(1..5)\] of \text{int}(1..5),
smoke: matrix indexed by \[\text{int}(1..5)\] of \text{int}(1..5),
pets: matrix indexed by \[\text{int}(1..5)\] of \text{int}(1..5)
such that

$\text{constraints needed as this is a logical problem where the value allocated to each position of the matrix represents position of house}$

alldiff(colour),
alldiff(nationality),
alldiff(drink),
alldiff(smoke),
alldiff(pets),

$\text{There are five houses.}$
$\text{No constraint covered by domain specification}$

$\text{The Englishman lives in the red house}$
nationality[1] = colour[1],

$\text{The Spaniard owns the dog.}$
nationality[2] = pets[1],

$\text{Coffee is drunk in the green house.}$
drink[1] = colour[2],

$\text{The Ukranian drinks tea.}$
nationality[3] = drink[2],

$\text{The green house is immediately to the right of the ivory house.}$
colour[2] + 1 = colour[3],

$\text{The Old Gold smoker owns snails.}$
smoke[1] = pets[2],

$\text{Kools are smoked in the yellow house.}$
smoke[2] = colour[4],

$\text{Milk is drunk in the middle house.}$
drink[3] = 3,
$\text{The Norwegian lives in the first house}$

\[
nationality[4] = 1,
\]

$\text{The man who smokes Chesterfields lives in}$
$\text{the house next to the man with the fox.}$

\[
\text{|smoke[3] - pets[3]|} = 1,
\]

$\text{Kools are smoked in the house next}$
$\text{to the house where the horse is kept.}$

\[
\text{|smoke[2] - pets[4]|} = 1,
\]

$\text{The Lucky Strike smoker drinks orange juice.}$

\[
\text{smoke[4] = drink[4]},
\]

$\text{The Japanese smokes Parliaments.}$

\[
nationality[5] = smoke[5],
\]

$\text{The Norwegian lives next to the blue house.}$

\[
\]

The Minion model is then:

MINION 3

There are matrices named colour, nationality, drink, smoke and pets to represent each of the objects discussed in the puzzle. They have domain \(\{1, \ldots, 5\}\) which represents where in the row of five houses this object is held. There are also three auxiliary variables introduced which are necessary for the most difficult constraints, these all have domains \(\{-4, \ldots, 4\}\).

VARIABLES

DISCRETE colour[5] \(\{1..5\}\)
DISCRETE nationality[5] \(\{1..5\}\)
DISCRETE drink[5] \(\{1..5\}\)
DISCRETE smoke[5] \(\{1..5\}\)
DISCRETE pets[5] \(\{1..5\}\)

auxiliary variables
DISCRETE aux0 \((-4..4)\)
DISCRETE aux1 \((-4..4)\)
DISCRETE aux2 \((-4..4)\)

The variable order branches on each of the matrices in turn then on the auxiliary variables. Only the matrices of variables are printed.
SEARCH

PRINT \{colour, nationality, drink, smoke, pets\}

VARORDER \{colour, nationality, drink, smoke, pets, aux0, aux1, aux2\}

We will go through each constraint in turn. As usual the constraints in Minion are in the reverse order of the Essence’ specification and the minion matrices are indexed from 0 whereas

CONSTRAINTS

\[|\text{nationality}[4] - \text{colour}[5]| = 1\] becomes by counting indices from zero: \[|\text{nationality}[3] - \text{colour}[4]| = 1\]. This is then decomposed as \[\text{nationality}[3] - \text{colour}[4] \geq \text{aux2},\]

\[\text{nationality}[3] - \text{colour}[4] \leq \text{aux2}\] and \[|\text{aux2}| = 1\].

\[\text{weightedsumgeq}([1,-1], [\text{nationality}[3],\text{colour}[4]], \text{aux2})\]

\[\text{weightedsumleq}([1,-1], [\text{nationality}[3],\text{colour}[4]], \text{aux2})\]

\[\text{abs}(1,\text{aux2})\]

\[\text{nationality}[5] = \text{smoke}[5]\] becomes by counting indices from zero: \[\text{nationality}[4] = \text{smoke}[4]\].

\[\text{eq}(\text{nationality}[4], \text{smoke}[4])\]

\[\text{drink}[4] = \text{smoke}[4]\] becomes by counting indices from zero: \[\text{drink}[3] = \text{smoke}[3]\].

\[\text{eq}(\text{drink}[3], \text{smoke}[3])\]

\[|\text{smoke}[2] - \text{pets}[4]| = 1\] becomes by counting indices from zero: \[|\text{smoke}[1] - \text{pets}[3]| = 1\]. This is then decomposed as \[\text{smoke}[1] - \text{pets}[3] \leq \text{aux1}, \text{smoke}[1] - \text{pets}[3] \geq \text{aux1}\] and \[|\text{aux1}| = 1\].

\[\text{weightedsumgeq}([1,-1], [\text{smoke}[1],\text{pets}[3]], \text{aux1})\]

\[\text{weightedsumleq}([1,-1], [\text{smoke}[1],\text{pets}[3]], \text{aux1})\]

\[\text{abs}(1,\text{aux1})\]

\[|\text{smoke}[3] - \text{pets}[3]| = 1\] becomes by counting indices from zero: \[|\text{smoke}[2] - \text{pets}[2]| = 1\]. This is then decomposed as \[\text{smoke}[2] - \text{pets}[2] \leq \text{aux0}, \text{smoke}[2] - \text{pets}[2] \geq \text{aux0}\] and \[|\text{aux0}| = 1\].

\[\text{weightedsumgeq}([1,-1], [\text{smoke}[2],\text{pets}[2]], \text{aux0})\]

\[\text{weightedsumleq}([1,-1], [\text{smoke}[2],\text{pets}[2]], \text{aux0})\]

\[\text{abs}(1,\text{aux0})\]

\[\text{nationality}[4] = 1\] becomes by counting indices from zero: \[\text{nationality}[3] = 1\].

\[\text{eq}(1, \text{nationality}[3])\]

\[\text{drink}[3] = 3\] becomes by counting indices from zero: \[\text{drink}[2] = 3\].

\[\text{eq}(3, \text{drink}[2])\]
CHAPTER 3. MINION IN PRACTICE

\[eq(colour[3], smoke[1]) \]

\[eq(pets[1], smoke[0]) \]

\[\text{sumleq}([1,colour[1]], colour[2]) \]
\[\text{sumgeq}([1,colour[1]], colour[2]) \]

\[eq(drink[1], nationality[2]) \]

\[eq(colour[1], drink[0]) \]

\[eq(nationality[1], pets[0]) \]

\[nationality[1] = colour[1] \text{ becomes by counting indices from zero: } nationality[0] = colour[0]\]
\[eq(colour[0], nationality[0]) \]

There is an implicit all different in the problem which is placed over all the matrices of variables.

\[\text{alldiff}([pets]) \]
\[\text{alldiff}([smoke]) \]
\[\text{alldiff}([drink]) \]
\[\text{alldiff}([nationality]) \]
\[\text{alldiff}([colour]) \]

EOF
3.7 N-Queens

N-Queens is perhaps the most famous problem in CP. It is often used to demonstrate systems. It is stated as the problem of putting \(n \) chess queens on an \(n \times n \) chessboard such that none of them is able to capture any other using the standard chess queen’s moves. The model we will discuss here is the column model, where there is one variable of domain \(1, \ldots, n \) for each row, which is the easiest model to describe. We will look at the version where \(n = 4 \) as this has a reasonably small number of constraints to These files can be found in /summer_school/examples the Essence’ file is NQueensColumn.eprime and the Minion file is NQueensColumn.minion. The Essence’ specification is as follows:

given \(n: \text{int} \)
find queens: matrix indexed by \([\text{int}(1..n)]\) of \(\text{int}(1..n) \)
such that

forall \(i : \text{int}(1..n) \). forall \(j : \text{int}(i+1..n) \).
\(|\text{queens}[i] - \text{queens}[j]| \neq |i - j|, \)
\alldiff(\text{queens}),

letting \(n \) be 4

The Minion model is then:

MINION 3

There are 4 variables, each of which represents a column of the chess board. This instance is of a \(4 \times 4 \) chessboard so there are 4 variables stored in a matrix called queens with domain \(\{1, \ldots, 4\} \). There are two auxiliary variables for each of the 6 diagonal constraints, one with domain \(\{-3, \ldots, 3\} \) and one with domain \(\{0, \ldots, 3\} \).

VARIABLES

DISCRETE queens[4] \{1..4\}

auxiliary variables
DISCRETE aux0 \{-3..3\}
DISCRETE aux1 \{0..3\}
DISCRETE aux2 \{-3..3\}
DISCRETE aux3 \{0..3\}
DISCRETE aux4 \{-3..3\}
DISCRETE aux5 \{0..3\}
DISCRETE aux6 \{-3..3\}
DISCRETE aux7 \{0..3\}
DISCRETE aux8 \{-3..3\}
DISCRETE aux9 \{0..3\}
DISCRETE aux10 \{-3..3\}
DISCRETE aux11 \{0..3\}
The variable order branches on each of the matrice variables in turn then on the auxiliary variables. Only the matrice of variables is printed.

SEARCH

PRINT [queens]

VARORDER [queens, aux0, aux1, aux2, aux3, aux4, aux5, aux6, aux7, aux8, aux9, aux10, aux11]

There is an all different constraint on the queens variables. This ensures that two queens cannot be put in the same row. The other constraints stop two queens being placed on a diagonal. These diagonal constraints are all of the form \(|queens[i] - queens[j]| \neq |i - j| \). This is decomposed into the following: \(queens[i] - queens[j] = auxa \), \(|auxa| = auxb \) and \(auxb \neq \) constant. As minion has no weighted sum equals the constraint is broken into a weighted sum less than or equals to and weighted sum greater than or equals to. So this full constraint \(queens[i] - queens[j] = auxa \) is represented as \(queens[i] - queens[j] \leq auxa \) and \(queens[i] - queens[j] \geq auxa \).

CONSTRAINTS

\[
\begin{align*}
\text{weightedsumgeq}([1,-1], [queens[2], queens[3]], aux0) \\
\text{weightedsumleq}([1,-1], [queens[2], queens[3]], aux0) \\
\text{abs}(aux1, aux0) \\
\text{weightedsumgeq}([1,-1], [queens[1], queens[3]], aux2) \\
\text{weightedsumleq}([1,-1], [queens[1], queens[3]], aux2) \\
\text{abs}(aux3, aux2) \\
\text{weightedsumgeq}([1,-1], [queens[1], queens[2]], aux4) \\
\text{weightedsumleq}([1,-1], [queens[1], queens[2]], aux4) \\
\text{abs}(aux5, aux4) \\
\text{diseq}(2, aux3) \\
\text{weightedsumgeq}([1,-1], [queens[0], queens[3]], aux6) \\
\text{weightedsumleq}([1,-1], [queens[0], queens[3]], aux6) \\
\text{abs}(aux7, aux6) \\
\text{weightedsumgeq}([1,-1], [queens[0], queens[2]], aux8) \\
\text{weightedsumleq}([1,-1], [queens[0], queens[2]], aux8) \\
\text{abs}(aux9, aux8) \\
\text{weightedsumgeq}([1,-1], [queens[0], queens[1]], aux10) \\
\text{weightedsumleq}([1,-1], [queens[0], queens[1]], aux10) \\
\text{abs}(aux11, aux10) \\
\text{diseq}(3, aux7) \\
\text{diseq}(2, aux9) \\
\text{diseq}(1, aux1) \\
\text{diseq}(1, aux5) \\
\text{diseq}(1, aux11) \\
\text{alldiff}([\{queens\}])
\end{align*}
\]
EOF
Appendix A

All the Minion programming constructs

You are viewing documentation for minion. The same documentation is available from
a minion executable by typing `minion help` at the command line. We intend that
the command line help system be the main source of documentation for the system.

Each of the entries below concerns a different aspect of the system, and the entries
are arranged hierarchically. For example to view information about the set of available
constraints as a whole view “constraints” and to view specific information about the
alldiff constraint view “constraints alldiff”.

A good place to start would be viewing the “input example” entry which exhibits a
complete example of a minion input file.

Usage: `minion [switches] [minion input file]`
A.1 constraints

Description

Minion supports many constraints and these are regularly being improved and added to. In some cases multiple implementations of the same constraints are provided and we would appreciate additional feedback on their relative merits in your problem.

Minion does not support nesting of constraints, however this can be achieved by auxiliary variables and reification.

Variables can be replaced by constants. You can find out more on expressions for variables, vectors, etc. in the section on variables.

References

help variables

A.2 constraints abs

Description

The constraint

\[
\text{abs}(x,y)
\]

makes sure that \(x = |y| \), i.e. \(x \) is the absolute value of \(y \).

Reference

help constraints abs

A.3 constraints alldiff

Description

Forces the input vector of variables to take distinct values.

Example

Suppose the input file had the following vector of variables defined:

\[
\text{DISCRETE myVec[9] \{1..9\}}
\]

To ensure that each variable takes a different value include the following constraint:

\[
\text{alldiff(myVec)}
\]

Notes

Enforces the same level of consistency as a clique of not equals constraints.
References

See

 help constraints gacalldiff

for the same constraint that enforces GAC.

A.4 constraints difference

Description

The constraint

 difference(x,y,z)

ensures that z=|x-y| in any solution.

Notes

This constraint can be expressed in a much longer form, this form both avoids requiring an extra variable, and also gets better propagation. It gets bounds consistency.

A.5 constraints diseq

Description

Constrain two variables to take different values.

Notes

Achieves arc consistency.

Example

diseq(v0,v1)

A.6 constraints div

Description

The constraint

 div(x,y,z)

ensures that floor(x/y)=z.

Notes

This constraint is only available for positive domains x, y and z.
A.7 constraints element

Description

The constraint

\[\text{element}(\text{vec}, i, e) \]

specifies that, in any solution, \(\text{vec}[i] = e \) and \(i \) is in the range \([0 \ldots \text{vec}|-1] \).

Notes

Warning: This constraint is not confluent. Depending on the order the propagators are called in Minion, the number of search nodes may vary when using element. To avoid this problem, use watchelement instead. More details below.

The level of propagation enforced by this constraint is not named, however it works as follows. For constraint \(\text{vec}[i]=e \):

- After \(i \) is assigned, ensures that \(\min(\text{vec}[i]) = \min(e) \) and \(\max(\text{vec}[i]) = \max(e) \).
- When \(e \) is assigned, removes \(\text{idx} \) from the domain of \(i \) whenever \(e \) is not an element of the domain of \(\text{vec}[\text{idx}] \).
- When \(m[\text{idx}] \) is assigned, removes \(\text{idx} \) from \(i \) when \(m[\text{idx}] \) is not in the domain of \(e \).

This level of consistency is designed to avoid the propagator having to scan through \(\text{vec} \), except when \(e \) is assigned. It does a quantity of cheap propagation and may work well in practise on certain problems.

Element is not confluent, which may cause the number of search nodes to vary depending on the order in which constraints are listed in the input file, or the order they are called in Minion. For example, the following input causes Minion to search 41 nodes.

```
MINION 3
**VARIABLES**
DISCRETE x[5] {1..5}
**CONSTRAINTS**
element([x[0],x[1],x[2]], x[3], x[4])
alldiff([x])
**EOF**
```

However if the two constraints are swapped over, Minion explores 29 nodes.

As a rule of thumb, to get a lower node count, move element constraints to the end of the list.
References
See the entry

 constraints watchelement

for details of an identical constraint that enforces generalised arc consistency.

A.8 constraints element_one
Description
The constraint element_one is identical to element, except that the vector is indexed from 1 rather than from 0.

References
See

 help constraints element

for details of the element constraint which is almost identical to this one.

A.9 constraints eq
Description
Constrain two variables to take equal values.

Example
eq(x0,x1)

Notes
Achieves bounds consistency.

Reference
help constraints minuseq

A.10 constraints gacalldiff
Description
Forces the input vector of variables to take distinct values.
Example
Suppose the input file had the following vector of variables defined:

```minion
DISCRETE myVec[9] {1..9}
```

To ensure that each variable takes a different value include the following constraint:

```minion
gacalldiff(myVec)
```

Notes
This constraint enforces generalized arc consistency.

A.11 constraints gaclexleq

Description

The constraint

```minion
gaclexleq(vec0, vec1)
```

takes two vectors `vec0` and `vec1` of the same length and ensures that `vec0` is lexicographically less than or equal to `vec1` in any solution.

Notes

This constraint achieves GAC.

References

See also

help constraints gaclexless

for a similar constraint with strict lexicographic inequality.

A.12 constraints gaclexless

Description

The constraint

```minion
gaclexless(vec0, vec1)
```

takes two vectors `vec0` and `vec1` of the same length and ensures that `vec0` is lexicographically less than `vec1` in any solution.

Notes

This constraint maintains GAC.
APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS

References

See also

help constraints gaclexleq

for a similar constraint with non-strict lexicographic inequality.

A.13 constraints gcc

Description

The Generalized Cardinality Constraint (GCC) constrains the number of each value that a set of variables can take.

gcc([primary variables], [values of interest], [capacity variables])

For each value of interest, there must be a capacity variable, which specifies the number of occurrences of the value in the primary variables.

This constraint is new, and its syntax and implementation are not finalised.

Example

Suppose the input file had the following vectors of variables defined:

DISCRETE myVec[9] {1..9}
BOUND cap[9] [0..2]

The following constraint would restrict the occurrence of values 1..9 in myVec to be at most 2 each initially, and finally equal to the values of the cap vector.

gcc(myVec, [1,2,3,4,5,6,7,8,9], cap)

Notes

This constraint enforces a hybrid consistency. It reads the bounds of the capacity variables, then enforces GAC over the primary variables only. Then the bounds of the capacity variables are updated using flow algorithms similar to those proposed by Quimper et al, Improved Algorithms for the Global Cardinality Constraint.

This constraint provides stronger propagation to the capacity variables than the gccweak constraint.

A.14 constraints gccweak

Description

The Generalized Cardinality Constraint (GCC) (weak variant) constrains the number of each value that a set of variables can take.

gccweak([primary variables], [values of interest], [capacity variables])
For each value of interest, there must be a capacity variable, which specifies the number of occurrences of the value in the primary variables.

This constraint is new, and its syntax and implementation are not finalised.

Example

Suppose the input file had the following vectors of variables defined:

```plaintext
DISCRETE myVec[9] {1..9}
BOUND cap[9] {0..2}
```

The following constraint would restrict the occurrence of values 1..9 in myVec to be at most 2 each initially, and finally equal to the values of the cap vector.

```plaintext
gccweak(myVec, [1,2,3,4,5,6,7,8,9], cap)
```

Notes

This constraint enforces a hybrid consistency. It reads the bounds of the capacity variables, then enforces GAC over the primary variables only. Then the bounds of the capacity variables are updated by counting values in the domains of the primary variables.

The consistency over the capacity variables is weaker than the gcc constraint, hence the name gccweak.

A.15 constraints hamming

Description

The constraint

```plaintext
hamming(X,Y,c)
```

ensures that the hamming distance between X and Y is at least c. That is, that the size of the set \(\{i \mid X[i] \neq y[i]\} \) is greater than or equal to c.

A.16 constraints ineq

Description

The constraint

```plaintext
ineq(x, y, k)
```

ensures that

\[x \leq y + k \]

in any solution.
Notes
Minion has no strict inequality (<) constraints. However \(x < y \) can be achieved by

\[
\text{ineq}(x, y, -1)
\]

A.17 constraints lexleq

Description
The constraint

\[
\text{lexleq}(\text{vec0}, \text{vec1})
\]

takes two vectors \(\text{vec0} \) and \(\text{vec1} \) of the same length and ensures that \(\text{vec0} \) is lexicographically less than or equal to \(\text{vec1} \) in any solution.

Notes
This constraint achieves GAC.

References
See also

\[
\text{help constraints lexless}
\]

for a similar constraint with strict lexicographic inequality.

A.18 constraints lexless

Description
The constraint

\[
\text{lexless}(\text{vec0}, \text{vec1})
\]

takes two vectors \(\text{vec0} \) and \(\text{vec1} \) of the same length and ensures that \(\text{vec0} \) is lexicographically less than \(\text{vec1} \) in any solution.

Notes
This constraint maintains GAC.

References
See also

\[
\text{help constraints lexleq}
\]

for a similar constraint with non-strict lexicographic inequality.
A.19 constraints litsumgeq

Description
The constraint litsumgeq(vec1, vec2, c) ensures that there exists at least c distinct indices i such that $vec1[i] = vec2[i]$.

Notes
A SAT clause $\{x, y, z\}$ can be created using:

$$litsumgeq([x, y, z], [1, 1, 1], 1)$$

Note also that this constraint is more efficient for smaller values of c. For large values consider using watchsumleq.

Reifiability
This constraint is not reifiable.

References
See also

- help constraints watchsumleq
- help constraints watchsumgeq

A.20 constraints max

Description
The constraint

$$\text{max}(\text{vec}, x)$$

ensures that x is equal to the maximum value of any variable in vec.

References
See

- help constraints min

for the opposite constraint.

A.21 constraints min

Description
The constraint

$$\text{min}(\text{vec}, x)$$

ensures that x is equal to the minimum value of any variable in vec.
References

See

 help constraints max

for the opposite constraint.

A.22 constraints minuseq

Description

Constraint

 minuseq(x,y)

ensures that x=-y.

Reference

 help constraints eq

A.23 constraints modulo

Description

The constraint

 modulo(x,y,z)

ensures that x%y=z i.e. z is the remainder of dividing x by y.

Notes

This constraint is only available for positive domains x, y and z.

References

 help constraints div

A.24 constraints negativetable

Description

An extensional constraint that enforces GAC. The constraint is specified via a list of disallowed tuples.
Notes
See entry
 help input negativetable
for how to specify a table constraint in minion input. The only difference for negativetable is that the specified tuples are disallowed.

References
help input table
help input tuplelist

A.25 constraints occurrence

Description
The constraint
 occurrence(vec, elem, count)
ensures that there are count occurrences of the value elem in the vector vec.

Notes
elem must be a constant, not a variable.

References
help constraints occurrenceleq
help constraints occurrencegeq

A.26 constraints occurrencegeq

Description
The constraint
 occurrencegeq(vec, elem, count)
ensures that there are AT LEAST count occurrences of the value elem in the vector vec.

Notes
elem and count must be constants

References
help constraints occurrence
help constraints occurrencegeq
A.27 constraints occurrenceleq

Description
The constraint

\texttt{occurrenceleq(vec, elem, count)}

ensures that there are AT MOST count occurrences of the value elem in the vector vec.

Notes
\texttt{elem} and \texttt{count} must be constants

References
\begin{itemize}
\item help constraints occurrence
\item help constraints occurrencegeq
\end{itemize}

A.28 constraints pow

Description
The constraint

\texttt{pow(x, y, z)}

ensures that \(x^y = z \).

Notes
This constraint is only available for positive domains \(x, y \) and \(z \).

A.29 constraints product

Description
The constraint

\texttt{product(x, y, z)}

ensures that \(z = xy \) in any solution.

Notes
This constraint can be used for (and, in fact, has a specialised implementation for) achieving boolean AND, i.e. \(x \land y \Rightarrow z \) can be modelled as

\texttt{product(x, y, z)}

The general constraint achieves bounds generalised arc consistency for positive numbers.
A.30 constraints reification

Description

Reification is provided in two forms: reify and reifyimply.

\[\text{reify(constraint, r)} \] where \(r \) is a 0/1 var

ensures that \(r \) is set to 1 if and only if constraint is satisfied. That is, if \(r \) is 0 the constraint must NOT be satisfied; and if \(r \) is 1 it must be satisfied as normal. Conversely, if the constraint is satisfied then \(r \) must be 1, and if not then \(r \) must be 0.

\[\text{reifyimply(constraint, r)} \]

only checks that if \(r \) is set to 1 then constraint must be satisfied. If \(r \) is not 1, constraint may be either satisfied or unsatisfied. Furthermore \(r \) is never set by propagation, only by search; that is, satisfaction of constraint does not affect the value of \(r \).

Notes

ALMOST ALL constraints are reifiable. Individual constraint entries mention if the constraint is NOT reifiable.

ALL constraints are reifyimplyable.

A.31 constraints reify

References

See

\[\text{help constraints reification} \]

A.32 constraints reifyimply

References

See

\[\text{help constraints reification} \]

A.33 constraints sumgeq

Description

The constraint

\[\text{sumgeq(vec, c)} \]

ensures that \(\text{sum(vec)} \) \(\geq \) \(c \).
A.34 constraints sumleq

Description

The constraint

\[
\text{sumleq(vec, } c)\]

ensures that \(\text{sum(vec)} \leq c\).

A.35 constraints table

Description

An extensional constraint that enforces GAC. The constraint is specified via a list of tuples.

Example

To specify a constraint over 3 variables that allows assignments \((0,0,0), (1,0,0), (0,1,0)\) or \((0,0,1)\) do the following.

1) Add a tupelist to the **TUPLELIST** section, e.g.:

TUPLELIST

myext 4 3

0 0 0
1 0 0
0 1 0
0 0 1

N.B. the number 4 is the number of tuples in the constraint, the number 3 is the \(-\)arity.

2) Add a table constraint to the **CONSTRAINTS** section, e.g.:

CONSTRAINTS

table(myvec, myext)

and now the variables of myvec will satisfy the constraint myext.

Example

The constraints extension can also be specified in the constraint definition, e.g.:

\[
\text{table(myvec, \{<0,0,0>,<1,0,0>,<0,1,0>,<0,0,1>\})}
\]

References

help input tupelist
help input negativetable
A.36 constraints watched-and

Description

The constraint

\[\text{watched-and}([C_1, \ldots, C_n]) \]

ensures that the constraints \(C_1, \ldots, C_n \) are all true.

Notes

pointless, bearing in mind that a CSP is simply a conjunction of constraints already! However sometimes it may be necessary to use a conjunction as a child of another constraint, for example in a reification:

\[\text{reify}(\text{watched-and}([\ldots]), r) \]

References

See also

help constraints watched-or

A.37 constraints watched-or

Description

The constraint

\[\text{watched-or}([C_1, \ldots, C_n]) \]

ensures that at least one of the constraints \(C_1, \ldots, C_n \) is true.

References

See also

help constraints watched-and

A.38 constraints watchelement

Description

The constraint

\[\text{watchelement}(\text{vec}, i, e) \]

specifies that, in any solution, \(\text{vec}[i] = e \) and \(i \) is in the range \([0 .. |\text{vec}|-1] \).

Notes

Enforces generalised arc consistency.
References
See entry
 help constraints element
for details of an identical constraint that enforces a lower level of consistency.

A.39 constraints watchelement_one
Description
This constraint is identical to watchelement, except the vector is indexed from 1 rather than from 0.

References
See entry
 help constraints watchelement
for details of watchelement which watchelement_one is based on.

A.40 constraints watchless
Description
The constraint watchless(x,y) ensures that x is less than y.

References
See also
 help constraints ineq

A.41 constraints watchsumgeq
Description
The constraint watchsumgeq(vec, c) ensures that sum(vec) >= c.

Notes
For this constraint, small values of c are more efficient.
Equivalent to litsumgeq(vec, [1,...,1], c), but faster.
This constraint works on 0/1 variables only.

Reifiability
This constraint is not reifiable.
APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS

References

See also

help constraints watchsumleq
help constraints litsumgeq

A.42 constraints watchsumleq

Description

The constraint watchsumleq(vec, c) ensures that sum(vec) <= c.

Notes

Equivalent to litsumgeq([vec1,...,vecn], [0,...,0], n-c) but faster.

This constraint works on binary variables only.

For this constraint, large values of c are more efficient.

References

See also

help constraints watchsumgeq
help constraints litsumgeq

A.43 constraints watchvecneq

Description

The constraint

watchvecneq(A, B)

ensures that A and B are not the same vector, i.e., there exists some index i such that A[i] != B[i].

A.44 constraints weightedsumgeq

Description

The constraint

weightedsumgeq(constantVec, varVec, total)

ensures that constantVec.varVec >= total, where constantVec.varVec is the scalar dot product of constantVec and varVec.
APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS

References
help constraints weightedsumleq
help constraints sumleq
help constraints sumgeq

A.45 constraints weightedsumleq

Description
The constraint

weightedsumleq(constantVec, varVec, total)

ensures that constantVec.varVec <= total, where constantVec.varVec is the scalar dot product of constantVec and varVec.

References
help constraints weightedsumgeq
help constraints sumleq
help constraints sumgeq

A.46 constraints w-inrange

Description
The constraint w-inrange(x, [a,b]) ensures that a <= x <= b.

References
See also
help constraints w-notinrange

A.47 constraints w-inset

Description
The constraint w-inset(x, [a1,...,an]) ensures that x belongs to the set {a1,..,an}.

References
See also
help constraints w-notinset

A.48 constraints w-literal

Description
The constraint w-literal(x, a) ensures that x=a.
References

See also

help constraints w-notliteral

A.49 constraints w-notinrange

Description

The constraint w-notinrange(x, [a,b]) ensures that x < a or b < x.

References

See also

help constraints w-inrange

A.50 constraints w-notinset

Description

The constraint w-notinset(x, [a1,...,an]) ensures that x does not belong to the set {a1,...,an}.

References

See also

help constraints w-inset

A.51 constraints w-notliteral

Description

The constraint w-notliteral(x, a) ensures that x /= a.

References

See also

help constraints w-literal

A.52 input

Description
Minion expects to be provided with the name of an input file as an argument. This file contains a specification of the CSP to be solved as well as settings that the search process should use. The format is

Minion3Input::= MINION 3
 <InputSection>+
 EOF

InputSection::= <VariablesSection>
 | <SearchSection>
 | <ConstraintsSection>
 | <TuplelistSection>

i.e. ‘MINION 3’ followed by any number of variable, search, constraints and tuplelists sections (can repeat) followed by ‘**EOF**’, the end of file marker.

All text from a ‘#’ character to the end of the line is ignored.

See the associated help entries below for information on each section.

Notes

You can give an input file via standard input by specifying ‘--’ as the file name, this might help when minion is being used as a tool in a shell script or for compressed input, e.g.,

 gunzip -c myinput.minion.gz | minion

A.53 input constraints

Description

The constraints section consists of any number of constraint declarations on separate lines.

ConstraintsSection::= **CONSTRAINTS**
 <ConstraintDeclaration>+

Example

CONSTRAINTS
 eq(bool,0)
 alldiff(d)

References

See help entries for individual constraints under

 help constraints

for details on constraint declarations.
A.54 input example

Example

Below is a complete minion input file with commentary, as an example.

MINION 3

While the variable section doesn’t have to come first, you can’t
really do anything until
You have one...

VARIABLES

There are 4 type of variables
BOOL bool # Boolean don’t need a domain
BOUND b {1..3} # Bound vars need a domain given as a range
DISCRETE d {1..3} # So do discrete vars

#Note: Names are case sensitive!
Internally, Bound variables are stored only as a lower and upper bound
Whereas discrete variables allow any sub-domain
SPARSEBOUND s {1,3,6,7} # Sparse bound variables take a sorted list of values

We can also declare matrices of variables!
DISCRETE q[3] {0..5} # This is a matrix with 3 variables: q[0],q[1] and q[2]
BOOL bm[2,2] # A 2d matrix, variables bm[0,0], bm[0,1], bm[1,0], bm[1,1]
BOOL bn[2,2,2,2] # You can have as many indices as you like!

#The search section is entirely optional
SEARCH

Note that everything in SEARCH is optional, and can only be given at
most once!
If you don’t give an explicit variable ordering, one is generated.
These can take matrices in interesting ways like constraints, see below.
VARORDER [bool,b,d]

If you don’t give a value ordering, ‘ascending’ is used
#VALORDER [a,a,a,a]

You can have one objective function, or none at all.
MAXIMISING bool
MINIMISING x3

both (MAX/MIN)IMISING and (MAX/MIN)IMIZING are accepted...

Print statement takes a vector of things to print
PRINT [bool, q]

You can also give:
PRINT ALL (the default)
PRINT NONE
Declare constraints in this section!

CONSTRAINTS

Constraints are defined in exactly the same way as in MINION input formats 1 & 2

```plaintext
eq(bool, 0)
eq(b, d)
```

To get a single variable from a matrix, just index it

```plaintext
eq(q[1], 0)
eq(bn[0, 1, 1, 1], bm[1, 1])
```

It's easy to get a row or column from a matrix. Just use _ in the
indices you want
to vary. Just giving a matrix gives all the variables in that matrix.

The following shows how flattening occurs...

```plaintext
[ bm ] == [ bm[,] ] == [ bm[0,0], bm[0,1], bm[1,0], bm[1,1] ]
[ bm[,1] ] == [ bm[0,1], bm[1,1] ]
[ bn[1,-,0,-] ] == [ bn[1,0,0,0], b[1,0,0,1], b[1,1,0,0], b[1,1,0,1] ]
```

You can string together a list of such expressions!

```plaintext
lexleq( [bn[1,-,0,-], bool, q[0]], [b, bm, d] )
```

One minor problem.. you must always put [] around any matrix expression, so
lexleq(bm, bm) is invalid

```plaintext
lexleq( [bm], [bm] ) # This is OK!
```

Can give tuplelists, which can have names!
The input is: <name> <num_of_tuples> <tuple_length> <numbers...>
The formatting can be about anything..

TUPLELIST

```plaintext
Fred 3 3
0 2 3
2 0 3
3 1 3

Bob 2 2 1 2 3 4
```

No need to put everything in one section! All sections can be reopened..

VARIABLES

You can even have empty sections.. if you want

CONSTRAINTS

Specify tables by their names..

```plaintext
table([q], Fred)
```
Can still list tuples explicitly in the constraint if you want at
the moment.
On the other hand, I might remove this altogether, as it’s worse than giving
Tuplelists

tuple([q], (<0,2,3>, <2,0,3>, <3,1,3>))

EOF

Any text down here is ignored, so you can write whatever you like (or
nothing at all...)

A.55 input search

Description

Inside the search section one can specify

- variable orderings,
- value orderings,
- optimisation function, and
- details of how to print out solutions.

```
SearchSection::= <VarValOrdering>*
                <OptimisationFn>?
                <PrintFormat>?
```

If no varval ordering is given then the variables are assigned in instantiation
order and the values tried in ascending order.

If a variable order is given as a command line argument it will override
anything specified in the input file.

Multiple variable orders can be given, each with an optional value ordering:

```
VarValOrdering::= <VarOrder>
                <ValOrder>?
```

In each VarOrder an instantiation order is specified for a subset of
variables. Variables can optionally be "auxiliary variables" (add "AUX" to
the varorder) meaning that if there are several solutions to the problem
differing only in the auxiliary variables, only one is reported by minion.

```
VarOrder::= VARORDER AUX? <ORDER>? [ <varname>+ ]
```

where

```
<ORDER>::= STATIC | SDF | SRF | LDF | ORIGINAL | WDEG | CONFLICT | DOMOVERWDEG
```

The value ordering allows the user to specify an instantiation order
for the variables involved in the variable order, either ascending (a)
or descending (d) for each. When no value ordering is specified, the
default is to use ascending order for every search variable.
ValOrder::= VALORDER{ (a|d)+ }

To model an optimisation problem the user can specify to minimise or maximise a variable’s value.

OptimisationFn::= MAXIMISING <varname>
 | MINIMISING <varname>

Finally, the user can control some aspects of the way solutions are printed. By default (no PrintFormat specified) all the variables are printed in declaration order. Alternatively a custom vector, or ALL variables, or no (NONE) variables can be printed. If a matrix or, more generally, a tensor is given instead of a vector, it is automatically flattened into a vector as described in 'help variables vectors'.

PrintFormat::= PRINT <vector>
 | PRINT ALL
 | PRINT NONE

References

See also

switches -varorder

A.56 input tuplelist

Description

In a tuplelist section lists of allowed tuples for table constraints can be specified. This technique is preferable to specifying the tuples in the constraint declaration, since the tuplelists can be shared between constraints and named for readability.

The required format is

TuplelistSection::= **TUPLELIST**
 <Tuplelist>*

Tuplelist::= <name> <num_tuples> <tuple_length> <numbers>+

Example

TUPLELIST
AtMostOne 4 3
0 0 0
0 0 1
0 1 0
1 0 0

References

help constraints table
A.57 input variables

Description
The variables section consists of any number of variable declarations on separate lines.

VariablesSection::= **VARIABLES**<VarDeclaration>*

Example
VARIABLES

BOOL bool #boolean var
BOUND b {1..3} #bounds var
SPARSEBOUND myvar {1,3,4,6,7,9,11} #sparse bounds var
DISCRETE d[3] {1..3} #array of discrete vars

References
See the help section

 help variables

for detailed information on variable declarations.

A.58 switches

Description
Minion supports a number of switches to augment default behaviour. To see more information on any switch, use the help system. The list below contains all available switches. For example to see help on -quiet type something similar to

 minion help switches -quiet

replacing ‘minion’ by the name of the executable you’re using.

A.59 switches -check

Description
Check solutions for correctness before printing them out.

Notes
This option is the default for DEBUG executables.
A.60 switches -cpulimit

Description
To stop search after N seconds (CPU time), do

 minion -cpulimit N myinput.minion

References
help switches -timelimit
help switches -nodelimit
help switches -sollimit

A.61 switches -dumptree

Description
Print out the branching decisions and variable states at each node.

A.62 switches -findallsols

Description
Find all solutions and count them. This option is ignored if the problem contains any minimising or maximising objective.

A.63 switches -fullprop

Description
Disable incremental propagation.

Notes
This should always slow down search while producing exactly the same search tree.

Only available in a DEBUG executable.

A.64 switches -nocheck

Description
Do not check solutions for correctness before printing them out.

Notes
This option is the default on non-DEBUG executables.
A.65 switches -nodelimit

Description

To stop search after N nodes, do

 minion -nodelimit N myinput.minion

References

help switches -cpulimit
help switches -timelimit
help switches -sollimit

A.66 switches -noprintsols

Description

Do not print solutions.

A.67 switches -noresume

Description

Do not write a resume file on timeout or being killed.

A.68 switches -preprocess

This switch allows the user to choose what level of preprocess is applied to their model before search commences.

The choices are:

- GAC
 - generalised arc consistency (default)
 - all propagators are run to a fixed point
 - if some propagators enforce less than GAC then the model will not necessarily be fully GAC at the outset

- SACBounds
 - singleton arc consistency on the bounds of each variable
 - AC can be achieved when any variable lower or upper bound is a singleton in its own domain

- SAC
 - singleton arc consistency
 - AC can be achieved in the model if any value is a singleton in its own domain

- SSACBounds
- singleton singleton bounds arc consistency
- SAC can be achieved in the model when domains are replaced by either the singleton containing their upper bound, or the singleton containing their lower bound
- SSAC
- singleton singleton arc consistency
- SAC can be achieved when any value is a singleton in its own domain

These are listed in order of roughly how long they take to achieve. Preprocessing is a one off cost at the start of search. The success of higher levels of preprocessing is problem specific; SAC preprocesses may take a long time to complete, but may reduce search time enough to justify the cost.

Example
To enforce SAC before search:

 minion -preprocess SAC myinputfile.minion

References
help switches -X-prop-node

A.69 switches -printsols
Description
Print solutions.

A.70 switches -printsolsonly
Description
Print only solutions and a summary at the end.

A.71 switches -quiet
Description
Do not print parser progress.

References
help switches -verbose
A.72 switches -randomiseorder

Description
Randomises the ordering of the decision variables. If the input file specifies as ordering it will randomly permute this. If no ordering is specified a random permutation of all the variables is used.

A.73 switches -randomseed

Description
Set the pseudorandom seed to N. This allows 'random' behaviour to be repeated in different runs of minion.

A.74 switches -redump

Description
Print the minion input instance file to standard out. No search is carried out when this switch is used.

A.75 switches -resume-file

Description
Resume solving from a resume file.

Example
To resume the solving of problem.minion from the file resume.minion do

minion -resume-file resume.minion problem.minion

A.76 switches -sollimit

Description
To stop search after N solutions have been found, do

minion -sollimit N myinput.minion

References
help switches -cpulimit
help switches -nodelimit
help switches -timelimit
APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS

A.77 switches -solsout

Description
Append all solutions to a named file. Each solution is placed on a line, with no extra formatting.

Example
To add the solutions of myproblem.minion to mysols.txt do

 minion -solsout mysols.txt myproblem.minion

A.78 switches -tableout

Description
Append a line of data about the current run of minion to a named file. This data includes minion version information, arguments to the executable, build and solve time statistics, etc. See the file itself for a precise schema of the supplied information.

Example
To add statistics about solving myproblem.minion to mystats.txt do

 minion -tableout mystats.txt myproblem.minion

A.79 switches -timelimit

Description
To stop search after N seconds (real time), do

 minion -timelimit N myinput.minion

References
help switches -cpulimit
help switches -nodelimit
help switches -sollimit

A.80 switches -varorder

Description
Enable a particular variable ordering for the search process. This flag is experimental and minion’s default ordering might be faster.

The available orders are:
APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS

- sdf - smallest domain first, break ties lexicographically
- sdf-random - sdf, but break ties randomly
- srf - smallest ratio first, chooses unassigned variable with smallest percentage of its initial values remaining, break ties lexicographically
- srf-random - srf, but break ties randomly
- ldf - largest domain first, break ties lexicographically
- ldf-random - ldf, but break ties randomly
- random - random variable ordering
- static - lexicographical ordering

A.81 switches -verbose

Description
Print parser progress.

References
help switches -quiet

A.82 switches -X-prop-node

Description
Allows the user to choose the level of consistency to be enforced during search.

See entry ‘help switches -preprocess’ for details of the available levels of consistency.

Example
To enforce SSAC during search:

 minion -X-prop-node SSAC input.minion

References
help switches -preprocess

A.83 variables

General
Minion supports 4 different variable types, namely
- 0/1 variables,
- bounds variables,
- sparse bounds variables, and
- discrete variables.

Sub-dividing the variable types in this manner affords the greatest opportunity for optimisation. In general, we recommend thinking of the variable types as a hierarchy, where 1 (0/1 variables) is the most efficient type, and 4 (Discrete variables) is the least. The user should use the variable which is the highest in the hierarchy, yet encompasses enough information to provide a full model for the problem they are attempting to solve.

Minion also supports use of constants in place of variables, and constant vectors in place of vectors of variables. Using constants will be at least as efficient as using variables when the variable has a singleton domain.

See the entry on vectors for information on how vectors, matrices and, more generally, tensors are handled in Minion input. See also the alias entry for information on how to multiply name variables for convenience.

A.84 variables 01

Description

0/1 variables are used very commonly for logical expressions, and for encoding the characteristic functions of sets and relations. Note that wherever a 0/1 variable can appear, the negation of that variable can also appear. A boolean variable x’s negation is identified by !x.

Example

Declaration of a 0/1 variable called bool in input file:

```
BOOL bool
```

Use of this variable in a constraint:

```
eq(bool, 0) #variable bool equals 0
```

A.85 variables alias

Description

Specifying an alias is a way to give a variable another name. Aliases appear in the **VARIABLES** section of an input file. It is best described using some examples:

```
ALIAS c = a
ALIAS c[2,2] = [[myvar,b[2]],[b[1],anothervar]]
```
A.86 variables bounds

Description

Bounds variables, where only the upper and lower bounds of the domain are maintained. These domains must be continuous ranges of integers i.e. holes cannot be put in the domains of the variables.

Example

Declaration of a bound variable called myvar with domain between 1 and 7 in input file:

BOUND myvar {1..7}

Use of this variable in a constraint:

eq(myvar, 4) #variable myvar equals 4

A.87 variables constants

Description

Minion supports the use of constants anywhere where a variable can be used. For example, in a constraint as a replacement for a single variable, or a vector of constants as a replacement for a vector of variables.

Examples

Use of a constant:

eq(x,1)

Use of a constant vector:

element([10,9,8,7,6,5,4,3,2,1],idx,e)

A.88 variables discrete

Description

In discrete variables, the domain ranges between the specified lower and upper bounds, but during search any domain value may be pruned, i.e., propagation and search may punch arbitrary holes in the domain.

Example

Declaration of a discrete variable x with domain {1,2,3,4} in input file:

DISCRETE x {1..4}

Use of this variable in a constraint:

eq(x, 2) #variable x equals 2
A.89 variables sparsebounds

Description

In sparse bounds variables the domain is composed of discrete values (e.g. \{1, 5, 36, 92\}), but only the upper and lower bounds of the domain may be updated during search. Although the domain of these variables is not a continuous range, any holes in the domains must be there at time of specification, as they can not be added during the solving process.

Notes

Declaration of a sparse bounds variable called myvar containing values \{1,3,4,6,7,9,11\} in input file:

```
SPARSEBOUND myvar \{1,3,4,6,7,9,11\}
```

Use of this variable in a constraint:

```
eq(myvar, 3) #myvar equals 3
```

A.90 variables vectors

Description

Vectors, matrices and tensors can be declared in minion input. Matrices and tensors are for convenience, as constraints do not take these as input; they must first undergo a flattening process to convert them to a vector before use. Additional commas at the end of vectors are ignored (see example below).

Examples

A vector of 0/1 variables:

```
BOOL myvec[5]
```

A matrix of discrete variables:

```
DISCRETE sudoku[9,9] \{1..9\}
```

A 3D tensor of 0/1s:

```
BOOL mycube[3,3,2]
```

One can create a vector from scalars and elements of vectors, etc.:

```
alldiff([x,y,myvec[1],mymatrix[3,4]])
```

When a matrix or tensor is constrained, it is treated as a vector whose entries have been strung out into a vector in index order with the rightmost index changing most quickly, e.g.

```
alldiff(sudoku)
```
is equivalent to
\[
\text{alldiff(}\{\text{sudoku}[0,0],\ldots,\text{sudoku}[0,8],\ldots,\text{sudoku}[8,0],\ldots,\text{sudoku}[8,8]\}\text{)}
\]

Furthermore, with indices filled selectively and the remainder filled with underscores (_), the flattening applies only to the underscore indices:

\[
\text{alldiff(}\text{sudoku}[4,_]\text{)}
\]
is equivalent to
\[
\text{alldiff(}\{\text{sudoku}[4,0],\ldots,\text{sudoku}[4,8]\}\text{)}
\]

Lastly, one can optionally add square brackets ([]) around an expression to be flattened to make it look more like a vector:

\[
\text{alldiff(}\{\text{sudoku}[4,_]\}\text{)}
\]
is equivalent to
\[
\text{alldiff(}\text{sudoku}[4,_]\text{)}
\]

Example

Additional hanging commas at the end of array are ignored, e.g.

\[
\text{lexleq(}\{A,B,C,\},\{D,E,F,\}\text{)}
\]
is equivalent to
\[
\text{lexleq(}\{A,B,C\},\{D,E,F\}\text{)}
\]

This feature is provided to make it easier to computer-generate input files.
Bibliography

